首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1053篇
  免费   45篇
林业   120篇
农学   40篇
基础科学   6篇
  219篇
综合类   166篇
农作物   49篇
水产渔业   88篇
畜牧兽医   314篇
园艺   33篇
植物保护   63篇
  2023年   7篇
  2022年   16篇
  2021年   31篇
  2020年   33篇
  2019年   27篇
  2018年   26篇
  2017年   26篇
  2016年   29篇
  2015年   27篇
  2014年   26篇
  2013年   39篇
  2012年   89篇
  2011年   89篇
  2010年   36篇
  2009年   39篇
  2008年   96篇
  2007年   73篇
  2006年   68篇
  2005年   71篇
  2004年   64篇
  2003年   51篇
  2002年   41篇
  2001年   11篇
  2000年   10篇
  1999年   6篇
  1998年   8篇
  1997年   3篇
  1996年   6篇
  1995年   7篇
  1994年   3篇
  1993年   3篇
  1992年   3篇
  1991年   4篇
  1990年   4篇
  1989年   2篇
  1988年   2篇
  1985年   1篇
  1982年   1篇
  1981年   2篇
  1978年   1篇
  1955年   1篇
  1940年   1篇
  1898年   1篇
  1893年   1篇
  1889年   1篇
  1888年   1篇
  1887年   3篇
  1886年   2篇
  1884年   1篇
  1883年   3篇
排序方式: 共有1098条查询结果,搜索用时 15 毫秒
91.
Mediterranean ecosystems are water limited and the current general circulation Models (GCM) and ecophysiological models forecast a warming and a further increase of drought in the next decades. A stronger water stress can decrease the capacity for nutrient absorption by plants. We conducted a field experiment to simulate forecasted drought and warming in a Mediterranean calcareous shrubland to assess the performance of root-surface phosphatase activities of the dominant shrub Globularia alypum. These enzyme activities were higher in autumn and spring, when the climate conditions were optimal for plant activity, than in summer or winter, when there was either lack of water or cold temperatures. A decrease in soil moisture in drought plots decreased root-surface phosphatase activity (29% in summer and 25% in autumn). The decrease in root-surface phosphatase activity in drought plots coincided with a decrease in P leaf concentrations and P accumulation in aboveground biomass and loss of photosynthetic capacity of some dominant shrub species of this ecosystem, and with a tendency to increase total soil-P. These results suggest that the expected drier conditions in this Mediterranean shrubland in the next decades will slow down the P uptake by plants, thereby, diminishing the P contents in biomass and increasing total P contents in soil in non-available forms and that this can be, in part, attributable to a result of the decrease in root-surface phosphatase activity.  相似文献   
92.
93.
Outbreaks of morbidity and mortality in double-crested cormorants (Phalacrocorax auritus) along Florida's Gulf Coast have occurred sporadically for at least 30 yr. During these outbreaks, the Clinic for the Rehabilitation of Wildlife, located on Sanibel Island in Florida, has admitted a substantial number of cormorants with consistent presentation of primarily neurologic clinical signs. In order to investigate the association of these outbreaks in cormorants with exposure to brevetoxin, we compared the timing of admittance of cormorants with outbreak-specific clinical signs to blooms of the brevetoxin-producing marine algae, Karenia brevis (formerly Gymnodinium breve), around Sanibel Island from 1995 through 1999. The clinic admitted 360 out of 613 cormorants with the common clinical sign of severe cerebellar ataxia in six outbreaks occurring during this period. The ataxia was characterized by a broad-based stance, truncal incoordination, hypermetric gait, and intention tremors of the head. The histopathologic findings in 10 cormorants euthanized in 1997 were mild and nonspecific. An immunohistochemical staining technique for the detection of brevetoxin in cormorants documented the uptake of brevetoxin in tissues from four cormorants admitted during an outbreak in 1997, but a modified technique used on samples from 11 cormorants admitted during a K. brevis bloom in 2000 produced indeterminate results. Admittance of cormorants with outbreak-specific clinical signs was positively correlated (P < 0.05) with concurrent concentrations of K. brevis in local water. The cross-correlation coefficient was also significant when increased K. brevis levels preceded cormorant admittances by 2, 4, 6, and 8 wk. This delay in time between K. brevis blooms and cormorant admittance and our clinical finding of neurologic abnormalities in cormorants without overt histopathologic features suggest an association between K. brevis blooms and local cormorant morbidity.  相似文献   
94.
The study developed models for predicting the post-fire tree survival in Catalonia. The models are appropriate for forest planning purposes. Two types of models were developed: a stand-level model to predict the degree of damage caused by a forest fire, and tree-level models to predict the probability of a tree to survive a forest fire. The models were based on forest inventory and fire data. The inventory data on forest stands were obtained from the second (1989–1990) and third (2000–2001) Spanish national forest inventories, and the fire data consisted of the perimeters of forest fires larger than 20 ha that occurred in Catalonia between the 2nd and 3rd measurement of the inventory plots. The models were based on easily measurable forest characteristics, and they permit the forest manager to predict the effect of stand structure and species composition on the expected damage. According to the stand level fire damage model, the relative damage decreases when the stand basal area or mean tree diameter increases. Conversely, the relative stand damage increases when there is a large variation in tree size, when the stand is located on a steep slope, and when it is dominated by pine. According to the tree level survival models, trees in stands with a high basal area, a large mean tree size and a small variability in tree diameters have a high survival probability. Large trees in dominant positions have the highest probability of surviving a fire. Another result of the study is the exceptionally good post-fire survival ability of Pinus pinea and Quercus suber.  相似文献   
95.
OBJECTIVE: To determine complications and neurologic outcomes associated with dexamethasone administration to dogs with surgically treated thoracolumbar intervertebral disk herniation, compared with dogs not receiving dexamethasone. DESIGN: Retrospective case series. ANIMALS: 161 dogs with surgically confirmed thoracolumbar disk herniation. PROCEDURES: Medical records from 2 hospitals were used to identify dogs that had received dexamethasone < 48 hours prior to admission (dexamethasone group dogs), dogs that received glucocorticoids other than dexamethasone < 48 hours prior to admission (other-glucocorticoid group dogs), and dogs that received no glucocorticoids (nontreatment group dogs). Signalment, neurologic injury grade, laboratory data, and complications were extracted from medical records. RESULTS: Dexamethasone group dogs were 3.4 times as likely to have a complication, compared with other-glucocorticoid or nontreatment group dogs. Dexamethasone group dogs were 11.4 times as likely to have a urinary tract infection and 3.5 times as likely to have diarrhea, compared with other-glucocorticoid or nontreatment group dogs. No differences in neurologic function at discharge or recheck evaluation were detected among groups. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated that treatment with dexamethasone before surgery is associated with more adverse effects, compared with treatment with glucocorticoids other than dexamethasone or no treatment with glucocorticoids, in dogs with thoracolumbar intervertebral disk herniation. In this study population, no difference in outcome was found among groups. These findings suggest that the value of dexamethasone administration before surgery in dogs with thoracolumbar disk herniation should be reconsidered.  相似文献   
96.
Modern breeding primarily targets crop yield traits and is likely to influence root-associated microbiomes, which play significant roles in plant growth and health. The relative importance of soil and cultivar factors in shaping root-associated microbiomes of modern maize (Zea mays L.) remains uncertain. We conducted a pot experiment in a controlled environment using three soils (Mollisol, Inceptisol, and Ultisol) and four contrasting cultivars, Denghai 605, Nonghua 816, Qiaoyu 8, and Zhengdan 958, which are widely planted in China. We used 16S rRNA gene amplicon sequencing to characterize the bacterial communities in the bulk soil, rhizosphere, and endosphere. Our results showed that the four cultivars had different shoot biomass and root exudate total organic carbon and organic acid contents. The microbiomes in the bulk soil, rhizosphere, and endosphere were different. We observed apparent community divergence between soils rather than cultivars, within which edaphic factors substantially contributed to microbiome variation. Moreover, permutational multivariate analysis of variance corroborated significant contributions of soil type but not cultivar on the root-associated microbiome structure. Differential abundance analysis confirmed that each soil presented a distinct root microbiome, while network analysis indicated different co-occurrence patterns of the root microbiome among the three soils. The core root microbiome members are implicated in plant growth promotion and nutrient acquisition in the roots. In conclusion, root-associated microbiomes of modern maize are much more controlled by soil characteristics than by cultivar root exudation. Our study is anticipated to help improve breeding strategies through integrative interactions of soils, cultivars, and their associated microbiomes.  相似文献   
97.
The protective impact of aggregation on microbial degradation through separation has been described frequently, especially for biotically formed aggregates. However, to date little information exists on the effects of organic‐matter (OM) quantity and OM quality on physical protection, i.e., reduced degradability by microorganisms caused by physical factors. In the present paper, we hypothesize that soil wettability, which is significantly influenced by OM, may act as a key factor for OM stabilization as it controls the microbial accessibility for water, nutrients, and oxygen in three‐phase systems like soil. Based on this hypothesis, the first objective is to evaluate new findings on the organization of organo‐mineral complexes at the nanoscale as one of the processes creating water‐repellent coatings on mineral surfaces. The second objective is to quantify the degree of alteration of coated surfaces with regard to water repellence. We introduce a recently developed trial that combines FTIR spectra with contact‐angle data as the link between chemical composition of OM and the physical wetting behavior of soil particles. In addition to characterizing the wetting properties of OM coatings, we discuss the implications of water‐repellent surfaces for different physical protection mechanisms of OM. For typical minerals, the OM loading on mineral surfaces is patchy, whereas OM forms nanoscaled micro‐aggregates together with metal oxides and hydroxides and with layered clay minerals. Such small aggregates may efficiently stabilize OM against microbial decomposition. However, despite the patchy structure of OM coating, we observed a relation between the chemical composition of OM and wettability. A higher hydrophobicity of the OM appears to stabilize the organic C in soil, either caused by a specific reduced biodegradability of OM or indirectly caused by increased aggregate stability. In partly saturated nonaggregated soil, the specific distribution of the pore water appears to further affect the mineralization of OM as a function of wettability. We conclude that the wettability of OM, quantified by the contact angle, links the chemical structure of OM with a bundle of physical soil properties and that reduced wettability results in the stabilization of OM in soils.  相似文献   
98.
A greenhouse experiment was conducted by growing oats (Avenasativa L.) in a continuously 13CO2 labeled atmosphere. The allocation of 13C-labeled photosynthates in plants, microbial biomass in rhizosphere and root-free soil, pools of soil organic C, and CO2 emissions were examined over the plant's life cycle. To isolate rhizosphere from root-free soil, plant seedlings were placed into bags made of nylon monofilament screen tissue (16 μm mesh) filled with soil. Two peaks of 13C in rhizosphere pools of microbial biomass and dissolved organic carbon (DOC), as well as in CO2 emissions at the earing and ripeness stages were revealed. These 13C maxima corresponded to: (i) the end of rapid root growth and (ii) beginning of root decomposition, respectively. The δ13C values of microbial biomass were higher than those of DOC and of soil organic matter (SOM). The microbial biomass C accounted for up to 56 and 39% of 13C recovered in the rhizosphere and root-free soil, respectively. Between 4 and 28% of 13C assimilated was recovered in the root-free soil. Depending on the phenological stage, the contribution of root-derived C to total CO2 emission from soil varied from 61 to 92% of total CO2 evolved, including 4-23% attributed to rhizomicrobial respiration. While 81-91% of C substrates used for microbial growth in the root-free soil and rhizosphere came from SOM, the remaining 9-19% of C substrates utilized by the microbial biomass was attributable to rhizodeposition. The use of continuous isotopic labelling and physical separation of root-free and rhizosphere soil, combined with natural 13C abundance were effective in gaining new insight on soil and rhizosphere C-cycling.  相似文献   
99.
This article addresses the effect of moisture content (0.8-9.9%) during dry-heating (80 degrees C) on selected physicochemical (solubility, turbidity, residual denaturation enthalpy, aggregation, surface hydrophobicity, and sulfhydryl content) and functional (foaming ability, foam density, and stability) properties of freeze-dried egg white (FDEW). Moisture content during dry-heating proved to be a parameter determining the functionality of the resulting egg white powder. The degree of conformational changes induced in the egg white proteins by dry-heating was strongly dependent on the amount of water present. Preferentially, dry-heating at 80 degrees C should be performed on egg white powder with a moisture content below 6.8%, as the loss of protein solubility above this value is extensive. In addition to insoluble aggregates, soluble, strongly stabilized aggregates were also formed, especially at higher moisture contents. The decrease in denaturation enthalpy, increase in surface hydrophobicity, and exposure of SH groups previously hidden in the protein core and their subsequent oxidation were more pronounced at prolonged dry-heating times and at higher moisture contents. These conformational changes resulted in improved foaming ability and foams with lower density. No effect of dry-heating on the foam stability was observed.  相似文献   
100.
Infrared spectra of material captured from comet 81P/Wild 2 by the Stardust spacecraft reveal indigenous aliphatic hydrocarbons similar to those in interplanetary dust particles thought to be derived from comets, but with longer chain lengths than those observed in the diffuse interstellar medium. Similarly, the Stardust samples contain abundant amorphous silicates in addition to crystalline silicates such as olivine and pyroxene. The presence of crystalline silicates in Wild 2 is consistent with mixing of solar system and interstellar matter. No hydrous silicates or carbonate minerals were detected, which suggests a lack of aqueous processing of Wild 2 dust.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号