首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   815篇
  免费   71篇
林业   89篇
农学   38篇
  146篇
综合类   26篇
农作物   45篇
水产渔业   150篇
畜牧兽医   275篇
园艺   17篇
植物保护   100篇
  2024年   1篇
  2023年   11篇
  2022年   27篇
  2021年   43篇
  2020年   45篇
  2019年   53篇
  2018年   51篇
  2017年   51篇
  2016年   40篇
  2015年   33篇
  2014年   37篇
  2013年   53篇
  2012年   51篇
  2011年   64篇
  2010年   31篇
  2009年   39篇
  2008年   44篇
  2007年   41篇
  2006年   30篇
  2005年   21篇
  2004年   30篇
  2003年   20篇
  2002年   19篇
  2001年   10篇
  2000年   7篇
  1999年   5篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1994年   2篇
  1992年   1篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   4篇
  1986年   1篇
  1985年   4篇
  1984年   1篇
  1983年   1篇
  1974年   2篇
排序方式: 共有886条查询结果,搜索用时 15 毫秒
61.
A proteinaceous inhibitor with high activity against trypsin-like serine proteinases was purified from seeds of the tamarind tree (Tamarindus indica) by gel filtration on Shephacryl S-200 followed by a reverse-phase HPLC Vidac C18 TP. The inhibitor, called the tamarind trypsin inhibitor (TTI), showed a Mr of 21.42 kDa by mass spectrometry analysis. TTI was a noncompetitive inhibitor with a Ki value of 1.7 x 10(-9) M. In vitro bioinsecticidal activity against insect digestive enzymes from different orders showed that TTI had remarkable activity against enzymes from coleopteran, Anthonomus grandis (29.6%), Zabrotes subfasciatus (51.6%), Callosobruchus maculatus (86.7%), Rhyzopertha dominica(88.2%), and lepidopteron, Plodia interpuncptella (26.7%), Alabama argillacea (53.8%), and Spodoptera frugiperda (75.5%). Also, digestive enzymes from Diptera, Ceratitis capitata (fruit fly), were inhibited (52.9%). In vivo bioinsecticidal assays toward C. capitata and C. maculatus larvae were developed. The concentration of TTI (w/w) in the artificial seed necessary to cause 50% mortality (LD50) of larvae was 3.6%, and that to reduce mass larvae by 50.0% (ED50) was 3.2%. Furthermore, the mass C. capitata larvae were affected at 53.2% and produced approximately 34% mortality at a level of 4.0% (w/w) of TTI incorporated in artificial diets.  相似文献   
62.
 We studied the relationship between urease activity (UA) and soil organic matter (SOM), microbial biomass N (Nbiom) content, and urea-N fertilizer assimilation by maize in a Dark Red Latosol (Typic Haplustox) cultivated for 9 years under no-tillage (NT), tillage with a disc plough (DP), and tillage with a moldboard plough (MP). Two soil depths were sampled (0–7.5 cm and 7.5–15 cm) at 4 different times during the crop cycle. Urea was applied at four different rates, ranging from 0 to 240 kg N ha–1. The levels of fertilizer N did not affect the UA, SOM content, and Nbiom content. No significant difference between the treatments (NT, DP, and MP) was observed for SOM during the experiment, probably because the major part of the SOM was in recalcitrant pools, since the area was previously cultivated (conventional tillage) for 20 years. The Nbiom content explained 97% and 69% of the variation in UA in the upper and deeper soil layer, respectively. UA and biomass N were significantly higher in the NT system compared to the DP and MP systems. The highest maize productivity and urea-N recovery was also observed for the NT system. We observed that the increase in urea-N losses under NT, possibly as a consequence of a higher UA, was compensated for by the increase in N immobilized in the biomass. Received: 2 July 1999  相似文献   
63.
Journal of Crop Science and Biotechnology - Superoxide dismutases (SODs) are a group of enzymes that play essential roles in catalyzing the dismutation of superoxide radicals to protect cells from...  相似文献   
64.
A total of six Ethiopian mustard ( Brassica carinata A. Braun) lines showing reduced levels of total glucosinolate content were developed through two different approaches. In the first case, eight lines with good agronomic performance under southern-Spanish conditions were first evaluated during two years for glucosinolate content, and a pedigree selection was then performed during three further generations. The line N2-142, with an average glucosinolate content of 82 μmoles g-1 seed, was developed from the original line C-49, with an average glucosinolate content of 115 μmoles g-1 seed. In the second case, chemical mutagenesis (EMS 1% v/v) was applied to seeds from the line C- 101, with an average glucosinolate content of 125 μmoles g- 1 seed. Five mutant lines showing an average glucosinolate content between 20 and 30 μmoles g-1 seed lower than the wild line C-101 were isolated in the M_3 or M_4 generation. The reduced glucosinolate content of these mutants was confirmed by developing and analysing the M_5 generation. Previous results in B. juncea suggest that a further reduction of total glucosinolate content might be achieved through genetic recombination between the different lines developed in this work. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
65.
66.
The whitefly-transmitted Tomato chlorosis virus (ToCV) (genus Crinivirus) is associated with yield and quality losses in field and greenhouse-grown tomatoes (Solanum lycopersicum) in South America. Therefore, the search for sources of ToCV resistance/tolerance is a major breeding priority for this region. A germplasm of 33 Solanum (Lycopersicon) accessions (comprising cultivated and wild species) was evaluated for ToCV reaction in multi-year assays conducted under natural and experimental whitefly vector exposure in Uruguay and Brazil. Reaction to ToCV was assessed employing a symptom severity scale and systemic virus infection was evaluated via RT-PCR and/or molecular hybridization assays. A subgroup of accessions was also evaluated for whitefly reaction in two free-choice bioassays carried out in Uruguay (with Trialeurodes vaporariorum) and Brazil (with Bemisia tabaci Middle-East-Asia-Minor1—MEAM1?=?biotype B). The most stable sources of ToCV tolerance were identified in Solanum habrochaites PI 127827 (mild symptoms and low viral titers) and S. lycopersicum ‘LT05’ (mild symptoms but with high viral titers). These two accessions were efficiently colonized by both whitefly species, thus excluding the potential involvement of vector-resistance mechanisms. Other promising breeding sources were Solanum peruvianum (sensu lato) ‘CGO 6711’ (mild symptoms and low virus titers), Solanum chilense LA1967 (mild symptoms, but with high levels of B. tabaci MEAM1 oviposition) and Solanum pennellii LA0716 (intermediate symptoms and low level of B. tabaci MEAM1 oviposition). Additional studies are necessary to elucidate the genetic basis of the tolerance/resistance identified in this set of Solanum (Lycopersicon) accessions.  相似文献   
67.
ABSTRACT

The use of applied phosphorus (P) and the uptake of nutrients from the soil by plants can be improved when the fertilizer is combined with the application of humic substances (HS). However, these beneficial effects are inconsistent and can depend on the type of soil. This study was performed to evaluate the effects of the application of HS (0, 1.25, and 7.50 mL pot–1), as Humic HF®, and fertilizer-P (10, 50, 100, and 200 mg P dm–3), as triple superphosphate, on root morphological characteristics, dry matter accumulation, nutrient uptake, and tuber yield of potatoes grown in sandy and clayey soils. Only under low P supply in the sandy soil did the supply of HS, at the rate of 1.25 mL pot–1, increase the plant growth, yield of tubers, and uptake of macronutrients by the plants, without affecting the efficiency of the P fertilization. In the clayey soil, which had a higher organic matter content, the application of HS did not affect plant growth, tuber yield or nutrient uptake. In both soils, P fertilization increased plant growth, tuber yield, and nutrient uptake. The combined application of HS and P increased the root length of potatoes in sandy soil.  相似文献   
68.
In nature, iron (Fe) occurs in abundance and ranks fourth among all elements on Earth’s surface. Still, its availability to plants is reduced, once this element is in the form of hydrated oxides, which can limit plant productivity and biomass production. On the other hand, in high concentrations, this essential micronutrient for the plants can become a toxic agent, increasing the environmental contamination. Fe is necessary for the maintenance of essential processes like respiration and photosynthesis, participating in the electron transport chain and in the conversion between Fe2+ and Fe3+, being a key element for carbon dioxide (CO2) fixation and, therefore, important for crop production of cultivated or natural species. The balance of Fe should be strictly controlled, because both its deficiency and its toxicity affect the physiological process of plants. In aerated soils Fe is present in the form of Fe3+, which is the oxidized form and is less available to plants, so these organisms have developed different strategies for absorption, transport and storage of Fe. Deficiency and excess of Fe correlate with local soil conditions and with the care adopted in plant nutrition during the phenological phases and/or in the course of its cultivation. In situations of excessive accumulation of Fe in tissues, an enhancement of hydroxyl radical generation (OH?) occurs by Fenton reaction. Here, we review the nutritional, genetic and ecophysiological aspects of uptake, translocation and accumulation of Fe ions in plants growing under conditions of deficiency or toxicity of this metal.  相似文献   
69.
The objective of this work was to evaluate the adsorption of macronutrients calcium, potassium, magnesium, nitrogen, and phosphorus in two Brazilian tropical peat samples, investigating the effect of pH and determining the kinetics of the adsorption process. Two different Brazilian tropical peat samples were characterized using FTIR, TG, and SEM techniques. Different pH conditions were tested, as well as different mass concentrations of the peats. Differences in the chemical structures of the peat samples directly influenced the adsorptive capacities for the macronutrients. The adsorptive capacity for nitrogen was highest at pH 3, while the best adsorption of calcium and potassium was obtained at pH 6. The best fit to the data was provided by the pseudo-second-order model, which confirmed the rapid adsorption of calcium by both peats.  相似文献   
70.
Summary The nitrogen metabolism of wheat plants inoculated with various Azospirillum brasilense strains and nitrate reductase negative (NR) mutants was studied in two monoxenic test tube experiments. The spontaneous mutants selected with chlorate under anaerobic conditions with nitrite as terminal electron acceptor fixed N2 in the presence of 10 mM NO3 and were stable after the plant passage. One strain (Sp 245) isolated from surface-sterilized wheat roots produced significant increases in plant weight at both NO3 levels (1 and 10 mM) which were not observed with the NR mutants or with the two other strains. Similar effects were observed in a pot experiment with soil on dry weight and total N incorporation but only at the higher N fertilizer level. In the monoxenic test tube experiments plants inoculated with the mutants showed lower nitrogenase activities than NR+ strains at the low NO3 level (1 = mM) but maintained the same level of activity with 10 mM NO3 where the activity of all NR+ strains was completely repressed. The nitrate reductase activity of roots increased with the inoculation of the homologous strains and with the mutants at both NO3 levels. At the low NO3 level this also resulted in increased activity in the shoots, but at the high NO3 level the two homologous strains produced significantly lower nitrate reductase activity in shoots while the mutants more than doubled it. The possible role of the bacterial nitrate reductase in NO3 assimilation by the wheat plant is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号