首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16407篇
  免费   0篇
  国内免费   1篇
林业   3623篇
农学   1298篇
基础科学   137篇
  2737篇
综合类   708篇
农作物   2095篇
水产渔业   1778篇
畜牧兽医   1059篇
园艺   1110篇
植物保护   1863篇
  2021年   5篇
  2020年   1篇
  2018年   2744篇
  2017年   2702篇
  2016年   1179篇
  2015年   64篇
  2014年   14篇
  2013年   7篇
  2012年   789篇
  2011年   2123篇
  2010年   2101篇
  2009年   1252篇
  2008年   1312篇
  2007年   1575篇
  2006年   30篇
  2005年   97篇
  2004年   100篇
  2003年   154篇
  2002年   59篇
  2001年   6篇
  2000年   40篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1993年   12篇
  1992年   7篇
  1990年   1篇
  1989年   5篇
  1988年   11篇
  1987年   1篇
  1980年   1篇
  1977年   4篇
  1972年   1篇
  1969年   1篇
  1968年   4篇
  1967年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
There has been growing interest in the use of bioresource waste for natural dyeing and finishing. This paper discusses dye extraction from the novel source fruit shell waste of Sterculia foetida and its application on mulberry silk fabric to confer aesthetic coloration and wellness properties such as ultra-violet (UV) protection and antibacterial properties. Treated fabrics showed a substantial increase in color depth and adequate wash, light, and rubbing fastness properties for dyed silk fabrics with and without mordanting. Pre-and post-mordanting of silk fabrics were carried out using mordants such as alum, harda (myrobalan), and copper sulfate. UV-visible spectrophotometric analysis of fruit shell extract (FSE) at different pHs and FSE with three different mordants at neutral pH was used to understand the phenomena of dye-fiber interaction. The treated fabrics characterised by ATR-FTIR, SEM-EDS, and XRD analysis indicate the nature of dye fiber interaction justifying the multifunctional properties. The treated fabric also showed very good ultraviolet protection property and antibacterial properties both against S. aureus and E. coli bacteria even after ten washes. The results indicate that Sterculia foetida fruit shell extract offers an excellent potential as coloration, antibacterial, and ultraviolet protective agent for mulberry silk fabric.  相似文献   
92.
Chromophore incorporated into the protein chains through residue modification on silk fibroin will be an important way to get new dyeing technology with improved color fastness. Herein, 1-aminoanthraquinone diazonium salt was prepared and used for the modified dyeing on tyrosine of silk fibroin. The silk after modified dyeing was measured by UV-Vis, FTIR, MS, 1H-NMR, Data color, and other testing techniques. Interestingly, the resulting silk showed excellent rub and wash fastness. The enhanced color fastness is contributed by an electrophilic substitution reaction between 1- aminoanthraquinone diazonium salt and the ortho position of phenolic hydroxyl in tyrosine molecular. Moreover, the mechanical property of silk was protected effectively by the mild coupling modified dyeing, better than the traditional acid dyeing under high temperature for a long time. This facile strategy provides an alternative approach to silk dyeing and benefits the silk applications.  相似文献   
93.
A novel optical chemical sensor based on a transparent electrospun nanofibrous scaffold, composed of polycaprolactam (PA6) and 1,10-phenanthroline (Phen), deposited on a glass slide and impregnated with polyvinyl alcohol (PVA) was coupled with UV-vis spectrophotometry and used for colorimetric determination of ferrous ion (Fe2+) and ascorbic acid (AA). The electrospun nanofibers were characterized using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR) techniques. The main factors affecting performance of the optical sensor (PA6-Phen/PVA@glass) including Phen dosage, pH of sample solution, electrospinning time, polymer solution flowrate, electrospinning voltage, and PVA amount were investigated and the related optimum values were obtained. The analytical merits of the sensor for quantitative determination of Fe2+ and ascorbic acid was evaluated. The limit of detection (LOD) and limit of quantification (LOQ) for Fe2+ were 1 and 3 μg mL-1, respectively. The linear dynamic range (LDR) was 3–150 μg mL-1 with the determination coefficient (R2) of 0.991. The relative standard deviation (RSD %, n=3) for a solution of 60 μg mL-1 was 5.4 %. For determination of AA, LOD and LOQ were obtained equal to 0.5 and 2 μg mL-1, respectively. The linear dynamic range was in the 2–200 μg mL-1 range with a R2 of 0.994. The RSD % at 100 μg mL-1, n=3) was equal to 7.0 %. The sensor was applied successfully to the detection of Fe(II) and AA in real water samples and aspirin tablets.  相似文献   
94.
The research work was carried out to synthesize a series of novel chitosan based water dispersible polyurethanes (CS-WDPUs). The three step synthesis involves the formation of end capped PU-prepolymer was formed through the reaction between polyethylene glycol (PEG) (Mn=600 g/mole, dimethylolpropionic acid (DMPA) and isophorone diisocyanate (IPDI) followed by the preparation of neutralized NCO terminated PU-prepolymer, which lead to the chain extension by using the chitosan. The dispersion of the obtained product was carried out by adding proper proportion of water. The synthesized CS-WDPUs were applied onto the different qualities of plain weave poly-cotton printed and dyed textile swatches by employing pad-dry-cure procedures. The textile assets of the treated and untreated textile swatches were assessed, as color fastness, pilling resistance, tear and tensile strength. The results showed that the chitosan incorporation into PU backbone has significant effect on the assets of treated textiles. These synthesized CS-WDPUs are eco-friendly bio-based finishes with potential applications for polyester/cotton textiles.  相似文献   
95.
As the use of high performance textiles has grown, the need for chemical finishes to provide the fabric properties required in the special applications has grown accordingly. In this project, a series of water dispersible polyurethanes dispersion (CS-PUs) with multipurpose performance profile was developed using isophorone diisocyanate (IPDI), polyethylene glycol (PEG), 2,2-dimethylol propionic acid (DMPA) and chitosan (CS) for textile applications. In two step synthesis process, NCO functional PU prepolymers prepared by reacting IPDI, PEG, and DMPA were extended with varying molar quantities of chitosan followed by structural characterization through FTIR. The prepared CS-PU dispersions were applied onto the dyed and printed poly-cotton blend fabrics. The performance behavior of the treated fabric in terms of crease recovery, tear strength, tensile strength, and antibacterial properties was evaluated by applying standard test methods. These investigations show that the CS-PU dispersions can be applied as antibacterial textile finishes with significant improvement in the physical and mechanical properties of poly-cotton fabrics.  相似文献   
96.
Leather finishing processes using toxic organic solvent based produce volatile organic compounds (VOC), chronic exposure to this chemicals effect on workers' health causing many diseases especially lung cancer. So, polyurethane waterbased was synthesized for application in leather finishing instead of organic solvent based because it’s economic and safety for industry and workers. Preparation of water-based polyurethane (PU) depends on the reaction of polyethylene glycol (PEG, 300) with isophorone diisocyanate (IPDI) and the reaction of IPDI-1,4-butanediol (BDO) together with dimethylolpropionic acid (DMPA), was synthesized by poly-addition polymerization reaction. PU was then modified with different amounts of silicon dioxide nanoparticles (1-5 % SiO2), used as a binder in leather finishing. Leather coated was characterized physically, chemically and thermally by FTIR, GPC, DLS, TEM, SEM and TGA. The results revel that, water vapor permeability (WVP) of leather coated with PU modified with SiO2 showed improvement due to the existence of SiO2 particles which increases the interspaces of the polyurethane coating. SEM showed that when the amount of SiO2 nanoparticles increases, there is uniform nanoparticles accumulated can be observed. EDX prove the presence of Si and O2 elements and the formation of SiO2 nanoparticles. Mechanical properties discussed that tensile strength; tear strength and elongation at break % increase with increase SiO2 concentration until 3 % SiO2 nanoparticles. TGA showed an improvement of thermal stability of coated leather modified with SiO2. Therefore, this study succeeded in preparation of safe, ecofriendly of water-based polyurethane binders which modified with SiO2 for using in leather finishing.  相似文献   
97.
The successful isolation and characterization of water hyacinth fiber (Eichornia crassipes) (WHF) nanocellulose is presented in this study. The novelty was in exploring a wider range of properties of highly purified samples of WHF after each stage of production in more depth. The isolation was accomplished by pulping in a digester and sonication. Morphological changes before and after treatment were demonstrated by scanning electron microscopy (SEM). The lignin and hemicellulose content decreased during chemical treatment. Transmission electron microscopy (TEM) and particle size analyzer (PSA) were used to determine the morphology of WHF after sonication for 1 h. TEM shows that the diameter and length of nanocellulose WHF were 15.61 and 147.4 nm, respectively. The crystallinity index and crystalline domain area significantly increased after chemical treatment. The highest crystallinity index was 84.87 % after an acid hydrolysis process. The increase in crystallinity leads to good thermal stability. Moisture absorption tests of WHF were carried out before and after treatment. The lowest moisture absorption was in the cellulose fiber after sonication (nanocellulose).  相似文献   
98.
Precision agriculture is a farming management concept based on observing, measuring and responding to inter- and intra-field variability in crops. In this paper, we focus on responding to intra-field variability in potato crops and analyse variable rate applications (VRAs). We made an overview of potential VRAs in potato crop management in The Netherlands. We identified 13 potential VRAs in potato, ranging from soil tillage to planting to crop care to selective harvest. We ranked them on availability of ‘proof of concept’ and on-farm test results. For five VRAs, we found test results allowing to make a cost-benefit assessment. These five VRAs were as follows: planting, soil herbicide weed control, N side dress, late blight control and haulm killing. They use one of two types of spatial data: soil maps or biomass index maps. Data on costs and savings of the VRAs showed that the investments in VRAs will pay off under practical conditions in The Netherlands. Savings on pesticide use and N-fertilizer use with the VRAs were on average about 25%, which benefits the environment too. We foresee a slow but gradual adoption of VRAs in potato production. More VRAs will become available given ongoing R&D. The perspectives of VRAs in potatoes are discussed.  相似文献   
99.
Silk is very promising in the field of biomaterials as a natural biomacromolecule. Silk protein can be made into various forms of materials, including hydrogels. However, silk protein-based hydrogels have not attracted much attention due to its weak mechanical properties. Here, we report high water content silk protein-based hydrogels with tunable elasticity which were fabricated through Ru(II) mediated photochemically cross-linking tyrosine residues in regenerated silk protein. The regenerated silk protein was characterized by Fourier transform infrared spectroscopy (FTIR). The gelation kinetics of the silk protein was studied by rheology measurements. The compressive mechanical properties of the silk protein-based hydrogels was investigated using compressive tests and dynamic mechanical analysis (DMA). Compressive modulus of the hydrogels reached 349±64 MPa at 15 % strain. The fabricated silk protein-based hydrogels were also characterized by Scanning electron microscopy (SEM), revealing an interconnected porous network structure, typical of hydrogels, with an average pore size of approximately 130 μm. Finally, biocompatibility of the silk protein-based hydrogels was demonstrated through cell culture studies using a human fibroblast cell line, HFL1. The reported silk protein-based hydrogels represent a promising candidate for biomaterial applications.  相似文献   
100.
Carbon nanotube (CNT) films are very flexible and serve as active materials for lithium-ion batteries (LIBs). Hence, they have high potential as flexible free-standing electrodes for wearable batteries. However, nanocarbon materials such as CNTs and graphene are of limited use as electrodes because they have a large initial irreversible capacity due to the formation of a solid electrolyte interphase (SEI). Herein, we prelithiated the CNT films to make them available as electrodes for flexible batteries by reducing their irreversible capacity. The SEI is pre-formed through a direct prelithiation (DP) method that brings lithium metal into direct contact with CNT films in an electrolyte. As a result, the capacity of directly-prelithiated CNT film electrodes continues to increase to 1520 mAh/g until 350th cycle of charge/discharge and their initial irreversible capacity vanishes. The changes in the electrochemical properties of CNT film electrodes by DP treatment and their flexibility are investigated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号