首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81856篇
  免费   4198篇
  国内免费   32篇
林业   4446篇
农学   3051篇
基础科学   571篇
  10956篇
综合类   12957篇
农作物   3467篇
水产渔业   3971篇
畜牧兽医   39405篇
园艺   1457篇
植物保护   5805篇
  2018年   2102篇
  2017年   2200篇
  2016年   1482篇
  2015年   889篇
  2014年   1052篇
  2013年   2755篇
  2012年   2305篇
  2011年   3316篇
  2010年   2700篇
  2009年   2520篇
  2008年   3086篇
  2007年   3250篇
  2006年   2041篇
  2005年   2046篇
  2004年   1897篇
  2003年   2069篇
  2002年   1865篇
  2001年   2255篇
  2000年   2219篇
  1999年   1758篇
  1998年   717篇
  1997年   777篇
  1996年   687篇
  1995年   867篇
  1994年   736篇
  1993年   753篇
  1992年   1525篇
  1991年   1635篇
  1990年   1605篇
  1989年   1621篇
  1988年   1512篇
  1987年   1457篇
  1986年   1537篇
  1985年   1450篇
  1984年   1270篇
  1983年   1063篇
  1982年   749篇
  1979年   1171篇
  1978年   888篇
  1977年   854篇
  1976年   799篇
  1975年   829篇
  1974年   1030篇
  1973年   1070篇
  1972年   1018篇
  1971年   952篇
  1970年   928篇
  1969年   900篇
  1968年   773篇
  1967年   850篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
 The phosphate-solubilizing potential of the rhizosphere microbial community in mangroves was demonstrated when culture media supplemented with insoluble, tribasic calcium phosphate, and incubated with roots of black (Avicennia germinans L.) and white [Laguncularia racemosa (L.) Gaertn.] mangrove became transparent after a few days of incubation. Thirteen phosphate-solubilizing bacterial strains were isolated from the rhizosphere of both species of mangroves: Bacillus amyloliquefaciens, Bacillus licheniformis, Bacillus atrophaeus, Paenibacillus macerans, Vibrio proteolyticus, Xanthobacter agilis, Enterobacter aerogenes, Enterobacter taylorae, Enterobacter asburiae, Kluyvera cryocrescens, Pseudomonas stutzeri, and Chryseomonas luteola. One bacterial isolate could not be identified. The rhizosphere of black mangroves also yielded the fungus Aspergillus niger. The phosphate-solubilizing activity of the isolates was first qualitatively evaluated by the formation of halos (clear zones) around the colonies growing on solid medium containing tribasic calcium phosphate as a sole phosphorus source. Spectrophotometric quantification of phosphate solubilization showed that all bacterial species and A. niger solubilized insoluble phosphate well in a liquid medium, and that V. proteolyticus was the most active solubilizing species among the bacteria. Gas chromatographic analyses of cell-free spent culture medium from the various bacteria demonstrated the presence of 11 identified, and several unidentified, volatile and nonvolatile organic acids. Those most commonly produced by different species were lactic, succinic, isovaleric, isobutyric, and acetic acids. Most of the bacterial species produced more than one organic acid whereas A. niger produced only succinic acid. We propose the production of organic acids by these mangrove rhizosphere microorganisms as a possible mechanism involved in the solubilization of insoluble calcium phosphate. Received: 21 April 1999  相似文献   
992.
Exposure of mango (Mangifera indica cv. Tommy Atkins) fruit to methyl jasmonate (MJ) vapors (10(-)(4) M) for 24 h at 25 degrees C reduced chilling injury during subsequent storage for 21 days at 7 degrees C and after 5 days of shelf life at 20 degrees C. The chilling tolerance induced by MJ was positively correlated with the reduction in the percent ion leakage of mango tissue. The overall quality of MJ-treated fruit was also better than that of control fruit. MJ treatment increased the total soluble solids but did not affect titratable acidity or pH. MJ also did not change the normal climacteric rise in respiration, water loss, and softening rates. The efficacy of MJ to reduce chilling injury and decay of mango could be related to the tolerance induced at low temperature. It was concluded that MJ treatment may prevent chilling injury symptoms of mango without altering the ripening process.  相似文献   
993.
Carbohydrates are known to be important precursors in the development of roasted peanut quality. However, little is known about their genotypic variation. A better understanding of the role of carbohydrates in roasted peanut quality requires first an understanding of the genotypic variation in the soluble carbohydrate components. Ion exchange chromatography was used to isolate 20 different carbohydrate components in 52 genotypes grown in replicated trials at two locations. Inositol, glucose, fructose, sucrose, raffinose, and stachyose were quantitated, and 12 unknown peaks were evaluated on the basis of the peak height of the unknown relative to the cellobiose internal standard peak height. Peaks tentatively identified as verbascose and ajugose could not be properly integrated because of tailing. Of the 18 carbohydrates that were estimated, 9 exhibited significant variation between test environments, 5 among market types, 14 among genotypes within market types, and 11 exhibited some significant form of genotype x environment interaction. Genotypes accounted for 38-78% of the total variation for the known components, suggesting that broad-sense heritability for these components is high. The observed high genotypic variation in carbohydrate components is similar to the high genotypic variation observed for the sweetness attribute in roasted peanuts, which raises the question regarding possible interrelationships. The establishment of such interrelationships could be most beneficial to peanut breeding programs to ensure the maintenance of flavor quality in future peanut varieties.  相似文献   
994.
Influence of soil pH-sorption interactions on imazethapyr carry-over   总被引:2,自引:0,他引:2  
Soil pH affects imazethapyr sorption-desorption, which in turn can affect persistence and bioavailability. Long-term imazethapyr carry-over has been observed in soil that is below pH 6.5, resulting in significant sugarbeet damage. Imazethapyr concentration decreased rapidly in field soil, regardless of pH. Despite similar amounts of imazethapyr remaining in aged soils at different pH levels, there were differences in bioavailability, which can be explained by sorption-desorption. At low pH more imazethapyr was sorbed than at high pH, but it readily desorbed. At high pH less imazethapyr was sorbed initially, but it did not readily desorb. Thus, after 3 months, the remaining imazethapyr in low-pH soil was desorbable and bioavailable, resulting in injury to canola and sugarbeet. Liming aged, low-pH soil released bound imazethapyr residues, which would then be degraded and result in less carry-over.  相似文献   
995.
The weathering of different brick samples ina range of aggressive environments has been studied.Brick samples were prepared using two clay types (fromGranada, Spain), different additives, and a range offiring temperatures (850–1100 °C). The brickscompositional and textural characteristics wereevaluated using XRD, SEM, hydric tests and mercuryintrusion porosimetry (MIP). The samples weresubjected to accelerate aging, including wet-dry,freeze-thaw and salt crystallization cycles. The decayof the bricks in polluted atmospheres was simulated ina static chamber containing sulfur dioxide (SO2)at 25 °C and 50% relative humidity. Samplesfired at 1000 °C proved to be the most durable,with better hydric behavior (fast drying and slowwater absorption) and fewer micropores. However, theywere not suitable for salt-rich environments (badperformance in the salt decay test). Samples fired at850 °C turned out to be more resistant to saltdecay, but they showed a poor hydric behavior (slowdrying and rapid water absorption) and littleresistance to freeze-thaw and wet-dry cycles. Samplesfired at 1100 °C had good hydric behavior, theyperformed well in the salt decay test, but they didnot perform as well as the samples fired at1000 °C in most accelerated aging tests. Gypsumformed on all the brick samples submitted to SO2atmosphere regardless exposure time (e.g. gypsumappears following just 24 h of exposure),composition, or firing temperature. Samples withdeposited particulate matter collected from vehicleexhausts (diesel, as well as leaded and non-leadedgasoline motor cars) resulted in the fastest gypsumdevelopment and greater abundance. On the other hand,the blank samples, and the samples withpollution-derived dust collected from historicalbuildings showed little gypsum development. Theimplications of these results in historicalbrick-building preservation in a range of aggressiveenvironments, and in polluted atmospheres inparticular, are discussed.  相似文献   
996.
Soil pH is one of the main factors influencing the solubility and availability of trace elements in arable soils. Thus pH can affect the trace element contents of agricultural crops and thereby indirectly influence human health. The aim of this study was to determine Cd, Ni, Zn, Cu, Mn, Cr, Al and Se contents in spring wheat, potatoes and carrots (Cd, Ni and Zn) and estimate their correlations with certain soil factors (surface and subsurface soil pH and organic matter content) governing the plant availability of these elements. Commercial fields were sampled in Sweden in order to cover a wide range of soil types with respect to pH, soil texture and organic matter content. Concentrations of Zn, Mn, Ni (grain) and Cd (straw) in spring wheat (n=43); Cd, Ni, Zn, Mn, Cu and Al in potatoes (n=69); and Cd, Ni and Zn in carrots (n=36) showed significant negative correlations with surface soil pH (0–25 cm). The Se content of potatoes and Cr content of spring wheat straw were positively correlated with soil pH. Stepwise multiple regressions including a combination of soil pHs (0–25 and 25–50 cm) and organic matter contents (0–25 cm) showed that the organic matter content as well as the surface and subsurface soil pH significantly influenced concentrations of several trace elements in one or more of the studied crops. It was concluded that, if acid deposition together with other acidifying processes (fertilisation, harvest of biomass, etc.) are not balanced by a sufficient amount of liming there might be a decrease in the pH of arable soils, which, in turn will lead to decreased levels of Se in edible crops but an overall increase concentrations of other trace elements.  相似文献   
997.
甘蓝黑腐病黄单胞菌(XanthomonascampestrisPv.campestris)产生的胞外蛋白酶Ⅰ在致病的早期阶段起重要作用,该酶以及其它胞外酶和胞外多糖的合成受一致病因子调控基因簇(rPf基因簇)的正向调控。本研究利用带有β-半乳糖苷酶报道基因(lacZ)的转座子Tn5-B20诱变蛋白酶Ⅰ基因克隆,获得了lacZ在蛋白酶Ⅰ基因启动子控制下表达的Tn5-B20插入突变质粒。通过将这种突变质粒导入野生型和各rpf基因突变体菌株后,测定lacZ基因在细胞生长周期中的表达水平,不仅进一步证实了这些rpf基因对蛋白酶Ⅰ基因的正向调控作用,而且明确了它们的调控水平.发现rpfA、rpfC、rpfE、rpfG或rpfH突变后,蛋白酶Ⅰ基因的转录会降低90%左右,而rpfB突变后,蛋白酶Ⅰ基因的转录只降低48%。  相似文献   
998.
The effects of tillage on soil organic carbon content, carbohydrate content, monosaccharide composition, aggregate stability, compactibility and plasticity were investigated in a field experiment on a gleysol and on a cambisol under winter barley in South-East Scotland. Two long-term treatments (direct drilling and conventional mouldboard ploughing for 22 years) were compared with short-term direct drilling and broadcast sowing plus rotavation for 5 years. Carbohydrate released sequentially to cold water, hot water, 1.0 M HCl and 0.5 M NaOH was determined after hydrolysis as reducing sugar equivalent to glucose in both fresh and air-dried samples. All other measurements were made on dry soils only. About 3% of the soluble carbohydrate was extracted by cold water, 10% by hot water, 12% by HCl and 75% by NaOH from both the dry and fresh soils. The total reducing sugars of the fractions were proportional to the total organic carbon determined by dichromate oxidation or C analysis. Organic carbon and carbohydrates were concentrated near the surface of the direct drilled soil, but were more uniformly distributed with depth in the ploughed soil. The surface soil under direct drilling was more stable, less compactible and had greater plasticity limits than under ploughing. However, particle size distributions were unaffected by tillage so that differences in soil properties were attributed to differences in the quantity and quality of organic matter. Differences in compactibility, structural stability and plasticity limits between depths and tillage treatments correlated with total carbon and with total carbohydrates. The hot water extractable carbohydrate fraction correlated best with aggregate stability and the NaOH fraction correlated best with compactibility and plastic limit. Both fractions were greatest in the long-term direct drilled soil. The hot water fraction had a galactose plus mannose over arabinose plus xylose ratio of 1.0–1.6 in comparison to 0.4–0.7 in the NaOH fraction indicating that the microbial contribution within the hot water-soluble fraction was the greater. The hot-water fraction was likely to contain more exocellular microbial polysaccharides involved in the stabilizing of soil aggregates. The hot-water and NaOH carbohydrate fractions may be good indicators of soil organic matter quality relevant to the preservation of good soil physical conditions.  相似文献   
999.
When converting grass- and haylands to cultivated crop production, care must be taken to conserve and maintain soil resources while considering economic issues. Methods of breaking sod can have a bearing on erosivity, physical and chemical properties of soils, and cost of production. Our objective was to compare three methods of converting crested wheatgrass [Agropyron desertorum (Fisch. ex Link) Schult.] hayland to wheat (Triticum aestivum L.) production vs. leaving the land for hay production. We initiated a study in 1990 on Dooley sandy loam (fine-loamy, mixed Typic Argiboroll) near Froid in semiarid eastern Montana, USA. Plots, replicated three times, were 12- by 30-m oriented east to west on a north-facing slope. We converted sod to cultivated crop production by: (1) moldboard plow, (2) toolbar with sweeps, (3) herbicides (no-till). Plots were fallowed until spring 1991 and then seeded to spring wheat each of the next four years. All wheat plots were fertilized with 224 kg ha−1 of 18-46-0 in 1991 and 1992, and 34 kg ha−1 nitrogen as 34-0-0 in 1993 and 1994. Grass was either fertilized same as wheat or not fertilized. Wheat yields averaged 2540 kg ha−1 on tilled treatments and 2674 kg ha−1 on no-till. Fertilized grass consistently out-yielded unfertilized, and averaged 3.2 Mg ha−1 vs. 1.8 Mg ha−1. Toolbar with sweeps had highest economic return of US$169.48 ha−1 to pay for land, labor, and management. Moldboard plow had US$162.05 ha−1. Because of herbicide costs, no-till only returned US$148.64 ha−1. Unfertilized grass hay returned US$67.68 ha−1 and fertilized grass hay, US$97.95 ha−1. Results may be tempered because our wheat yields were high: a 2016 kg ha−1 wheat yield would have returned the same as fertilized grass. Before converting grass- and hay-lands to small grains production, consideration must be given to such variables as sod conversion methods, management practices, labor requirements, market conditions, total precipitation and its temporal distribution, soil conditions, growth environment, soil conservation, and economics.  相似文献   
1000.
Carbon distribution and losses: erosion and deposition effects   总被引:21,自引:0,他引:21  
Because of concerns about the eventual impact of atmospheric CO2 accumulations, there is growing interest in reducing net CO2 emissions from soil and increasing C storage in soil. This review presents a framework to assess soil erosion and deposition processes on the distribution and loss of C in soils. The physical processes of erosion and deposition affect soil C distribution in two main ways and should be considered when evaluating the impact of agriculture on C storage. First, these processes redistribute considerable amounts of soil C, within a toposequence or a field, or to a distant site. Accurate estimates of soil redistribution in the landscape or field are needed to quantify the relative magnitude of soil lost by erosion and accumulated by deposition. Secondly, erosion and deposition drastically alter the biological process of C mineralization in soil landscapes. Whereas erosion and deposition only redistribute soil and organic C, mineralization results in a net loss of C from the soil system to the atmosphere. Little is known about the magnitude of organic C losses by mineralization and those due to erosion, but the limited data available suggest that mineralization predominates in the first years after the initial cultivation of the soil, and that erosion becomes a major factor in later years. Soils in depositional sites usually contain a larger proportion of the total organic C in labile fractions of soil C because this material can be easily transported. If the accumulation of soil in depositional areas is extensive, the net result of the burial (and subsequent reduction in decomposition) of this active soil organic matter would be increased C storage. Soil erosion is the most widespread form of soil degradation. At regional or global levels its greatest impact on C storage may be in affecting soil productivity. Erosion usually results in decreased primary productivity, which in turn adversely affects C storage in soil because of the reduced quantity of organic C returned to the soil as plant residues. Thus the use of management practices that prevent or reduce soil erosion may be the best strategy to maintain, or possibly increase, the worlds soil C storage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号