首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   6篇
林业   13篇
农学   2篇
  21篇
综合类   10篇
农作物   2篇
水产渔业   3篇
畜牧兽医   40篇
园艺   2篇
植物保护   9篇
  2023年   2篇
  2022年   3篇
  2021年   4篇
  2020年   4篇
  2019年   6篇
  2018年   3篇
  2017年   3篇
  2016年   7篇
  2015年   2篇
  2014年   4篇
  2013年   1篇
  2012年   10篇
  2011年   7篇
  2010年   8篇
  2009年   5篇
  2008年   1篇
  2007年   2篇
  2006年   7篇
  2005年   5篇
  2004年   4篇
  2003年   5篇
  2002年   5篇
  2001年   1篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有102条查询结果,搜索用时 15 毫秒
51.
52.
The optic tectum of zebrafish is involved in behavioral responses that require the detection of small objects. The superficial layers of the tectal neuropil receive input from retinal axons, while its deeper layers convey the processed information to premotor areas. Imaging with a genetically encoded calcium indicator revealed that the deep layers, as well as the dendrites of single tectal neurons, are preferentially activated by small visual stimuli. This spatial filtering relies on GABAergic interneurons (using the neurotransmitter γ-aminobutyric acid) that are located in the superficial input layer and respond only to large visual stimuli. Photo-ablation of these cells with KillerRed, or silencing of their synaptic transmission, eliminates the size tuning of deeper layers and impairs the capture of prey.  相似文献   
53.
54.
55.
ABSTRACT We detected the generation of the reactive oxygen species (ROS) superoxide anion ( O.(-) (2)) and hydrogen peroxide (H(2)O(2)) in apple wounds 2 immediately after wounding, and assessed the relationships between (i) timely colonization of apple wounds by biocontrol yeasts, (ii) resistance of these microorganisms to oxidative stress caused by ROS, and (iii) their antagonism against postharvest wound pathogens. We analyzed a model system consisting of two yeasts with higher (Cryptococcus laurentii LS-28) or lower (Rhodotorula glutinis LS-11) antagonistic activity against the postharvest pathogens Botrytis cinerea and Penicillium expansum. LS-28 exhibited faster and greater colonization of wounds than LS-11. In contrast to LS-28, the number of LS-11 cells dropped 1 and 2 h after application, and then increased only later. In vitro, LS-28 was more resistant to ROS-generated oxidative stress. The combined application of biocontrol yeasts and ROS-deactivating enzymes in apple wounds prevented the decrease in number of LS-11 cells mentioned above, and enhanced colonization and antagonistic activity of both biocontrol yeasts against B. cinerea and P. expansum. Polar lipids of LS-11 contained the more unsaturated and oxidizable alpha-linolenic acid, which was absent in LS-28. Resistance to oxidative stress could be a key mechanism of biocontrol yeasts antagonism against postharvest wound pathogens.  相似文献   
56.
Pesticides with N,N‐dimethyl and thiomethyl moieties (aminocarb, methiocarb and fenthion) were irradiated under artificial light (λ > 290 nm) in an amorphous wax phase from Persica laevis DC. The effect of the presence of the wax on the photolysis rate differed in the three pesticides, increasing it in aminocarb, having little effect in methiocarb and slowing it down in fenthion. The presence of the wax affected the qualitative photodegradation behaviour of all the pesticides. The data obtained were compared with those for pirimicarb, which had been studied earlier. © 2001 Society of Chemical Industry  相似文献   
57.

Background

Noise (errors) in scientific data is endemic and may have a detrimental effect on statistical analyses and experimental results. The effects of noisy data have been assessed in genome-wide association studies for case-control experiments in human medicine. Little is known, however, on the impact of noisy data on genomic predictions, a widely used statistical application in plant and animal breeding.

Results

In this study, the sensitivity to noise in the data of five classification methods (K-nearest neighbours—KNN, random forest—RF, ridge logistic regression—LR, and support vector machines with linear or radial basis function kernels) was investigated. A sugar beet population of 123 plants phenotyped for a binary trait and genotyped for 192 SNP (single nucleotide polymorphism) markers was used. Labels (0/1 phenotype) were randomly sampled to generate noise. From the base scenario without errors in the labels, increasing proportions of noisy labels—up to 50 %—were generated and introduced in the data.

Conclusions

Local classification methods—KNN and RF—showed higher tolerance to noisy labels compared to methods that leverage global data properties—LR and the two SVM models. In particular, KNN outperformed all other classifiers with AUC (area under the ROC curve) higher than 0.95 up to 20 % noisy labels. The runner-up method, RF, had an AUC of 0.941 with 20 % noise.
  相似文献   
58.
Tropical Animal Health and Production - Small ruminant lentiviruses (SRLVs) are a heterogeneous group of viruses of sheep, goat, and wild ruminants responsible of lifelong persistent infection...  相似文献   
59.
The essential oil obtained from different parts of Ferula glauca L. (formerly considered as a subspecies of F. communis) growing in Marche (central Italy), was analyzed for the first time by GC-FID and GC-MS. The major volatiles were (E)-caryophyllene and caryophyllene oxide in leaves, alpha-pinene, myrcene and germacrene D in flowers, alpha- and beta-pinene in fruits, (E)-beta-farnesene, myristicin and elemicin in roots, respectively. The differences in composition detected with respect to F. communis, made the volatile fraction a reliable marker to distinguish between them, and confirm the botanical data at the base of their discrimination. Furthermore, the oil was assayed for its antimicrobial activity by the broth microdilution method. B. subtilis was found to be the most sensitive microorganism, with the lowest MIC values.  相似文献   
60.
Ruminant supply chains contribute 5.7 gigatons of CO2-eq per annum, which represents approximately 80% of the livestock sector emissions. One of the largest sources of emission in the ruminant sector is methane (CH4), accounting for approximately 40% of the sectors total emissions. With climate change being a growing concern, emphasis is being put on reducing greenhouse gas emissions, including those from ruminant production. Various genetic and environmental factors influence cattle CH4 production, such as breed, genetic makeup, diet, management practices, and physiological status of the host. The influence of genetic variability on CH4 yield in ruminants indicates that genomic selection for reduced CH4 emissions is possible. Although the microbiology of CH4 production has been studied, further research is needed to identify key differences in the host and microbiome genomes and how they interact with one another. The advancement of “-omics” technologies, such as metabolomics and metagenomics, may provide valuable information in this regard. Improved understanding of genetic mechanisms associated with CH4 production and the interaction between the microbiome profile and host genetics will increase the rate of genetic progress for reduced CH4 emissions. Through a systems biology approach, various “-omics” technologies can be combined to unravel genomic regions and genetic markers associated with CH4 production, which can then be used in selective breeding programs. This comprehensive review discusses current challenges in applying genomic selection for reduced CH4 emissions, and the potential for “-omics” technologies, especially metabolomics and metagenomics, to minimize such challenges. The integration and evaluation of different levels of biological information using a systems biology approach is also discussed, which can assist in understanding the underlying genetic mechanisms and biology of CH4 production traits in ruminants and aid in reducing agriculture’s overall environmental footprint.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号