首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   180篇
  免费   2篇
林业   10篇
农学   15篇
基础科学   1篇
  40篇
农作物   61篇
水产渔业   15篇
畜牧兽医   25篇
园艺   3篇
植物保护   12篇
  2023年   2篇
  2022年   9篇
  2021年   14篇
  2020年   12篇
  2019年   14篇
  2018年   12篇
  2017年   16篇
  2016年   12篇
  2015年   10篇
  2014年   12篇
  2013年   18篇
  2012年   9篇
  2011年   13篇
  2010年   8篇
  2009年   5篇
  2008年   9篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
排序方式: 共有182条查询结果,搜索用时 281 毫秒
131.
Despite numerous studies on phytosiderophores (PS) there is still an open question whether nickel (Ni) deficiency induces release of PS from graminaceous plant roots. Seedlings of two wheat cultivars (Triticum aestivum L. cvs. Rushan and Kavir) and a triticale cultivar (X. triticosecale) were grown in Ni‐free nutrient solution (Ni‐deficient, Ni–) and with 10 µM NiSO4 (Ni‐sufficient, Ni+, control). Root exudates were collected weekly for 4 weeks and the amount of PS in the root exudates was measured. The response to Ni deficiency on the release of PS differed between species. Roots of Rushan and triticale exuded higher PS in response to Ni‐deficient conditions. Nickel deficiency significantly enhanced shoot Fe and Zn concentrations in wheat, while it decreased shoot Fe and Zn concentrations in triticale. In Kavir, PS exudation was decreased by Ni deficiency at weeks 3 and 4 and the reduced release of PS from roots of Kavir was accompanied by lower concentrations of Fe and Zn in plant roots but higher Fe and Zn concentrations in shoot tissue. The PS release by Kavir was triggered by a Ni‐induced Zn deficiency particularly in the shoots. According to the results, it is suggested that in the studies concerning the phytosiderophore release under Ni deficiency, special attention should be given to different responses among and within cereals and to the plant Zn or Fe nutritional status.  相似文献   
132.
Estimation of above-ground biomass is vital for understanding ecological processes. Since direct measurement of above-ground biomass is destructive, time consuming and labor intensive, canopy cover can be considered as a predictor if a significant correlation between the two variables exists. In this study, relationship between canopy cover and above-ground biomass was investigated by a general linear regression model. To do so, canopy cover and above-ground biomass were measured at 5 sub-life forms(defined as life forms grouped in the same height classes) using 380 quadrats, which is systematic-randomly laid out along a 10-km transect, during four sampling periods(May, June, August, and September) in an arid rangeland of Marjan, Iran. To reveal whether obtained canopy cover and above-ground biomass of different sampling periods can be lumped together or not, we applied a general linear model(GLM). In this model, above-ground biomass was considered as a dependent or response variable, canopy cover as an independent covariate or predictor factor and sub-life forms as well as sampling periods as fixed factors. Moreover, we compared the estimated above-ground biomass derived from remotely sensed images of Landsat-8 using NDVI(normalized difference vegetation index), after finding the best regression line between predictor(measured canopy cover in the field) and response variable(above-ground biomass) to test the robustness of the induced model. Results show that above-ground biomass(response variable) of all vegetative forms and periods can be accurately predicted by canopy cover(predictor), although sub-life forms and sampling periods significantly affect the results. The best regression fit was found for short forbs in September and shrubs in May, June and August with R~2 values of 0.96, 0.93 and 0.91, respectively, whilst the least significant was found for short grasses in June, tall grasses in August and tall forbs in June with R~2 values of 0.71, 0.73 and 0.75, respectively. Even though the estimated above-ground biomass by NDVI is also convincing(R~2=0.57), the canopy cover is a more reliable predictor of above-ground biomass due to the higher R~2 values(from 0.75 to 0.96). We conclude that canopy cover can be regarded as a reliable predictor of above-ground biomass if sub-life forms and sampling periods(during growing season) are taken into account. Since,(1) plant canopy cover is not distinguishable by remotely sensed images at the sub-life form level, especially in sparse vegetation of arid and semi-arid regions, and(2) remotely sensed-based prediction of above-ground biomass shows a less significant relationship(R~2=0.57) than that of canopy cover(R~2 ranging from 0.75 to 0.96), which suggests estimating of plant biomass by canopy cover instead of cut and weighting method is highly recommended. Furthermore, this fast, nondestructive and robust method that does not endanger rare species, gives a trustworthy prediction of above-ground biomass in arid rangelands.  相似文献   
133.
In this study, the effect of gonadotropin‐releasing hormone agonist (GnRHa) injection on milt production in spent rainbow trout was investigated. On day 0, 25 newly matured male rainbow trout (Oncorhynchus mykiss) were stripped manually, and sperm quantity (vol: mL fish?1) and quality, spermatocrit (%), sperm count (cell mL?1), motile sperm percentage and motility duration (s) were evaluated. After stripping, fish were randomly divided into five groups: intact; sham (injected with propylene glycol as a hormone vehicle); and groups receiving 4, 8 or 16 μg kg?1 BW of [d ‐Ala6 Des‐Gly10] mGnRHa. On day 7, the fish were stripped again and the same sperm characteristics as on day 0 were measured. At the beginning of the experiment, there were no significant differences in any of the sperm quantity characteristics between groups. On day 7, expressible milt volume was significantly reduced compared with day 0 (P<0.05, t‐test) in the intact and sham groups but milt quality remained the same (P>0.05, t‐test). The present study shows that GnRHa injection with a concentration as low as 4 μg kg?1 BW after first stripping could prevent a significant reduction in milt quantity collected 7 days later without any adverse effects on sperm quality.  相似文献   
134.
Polyacrylonitrile nanofibers were produced using the electrospinning method and dyed with a basic dye alongside regular polyacrylonitrile fibers. In order to investigate the effect of high surface area to volume ratio of nanofibers on their adsorption behavior in comparison with regular fibers, the dyeing conditions for both types of fibers were kept just the same. Physiochemical parameters of dyeing such as adsorption isotherm, standard affinity, enthalpy change, rate of dyeing constant, diffusion coefficient, and activation energy of diffusion were investigated for both types of fibers. The results showed that the adsorption process can be well described with the Langmuir adsorption isotherm for both types of fibers whereas the standard affinity of dye to nanofibers was higher than regular fibers and the higher negative values of enthalpy changes were obtained for regular fibers. The nanofibers rate of dyeing was faster than regular fibers with higher amounts of diffusion coefficients and lower amounts of activation energy of diffusion. This study also revealed that in spite of the approximately same amount of dye exhaustion for both types of fibers, the color strength of regular fibers was noticeably higher than nanofibers.  相似文献   
135.
Subsurface drainage is a prerequisite for year-round crop production in a large area of northern Iran, s paddy fields. Minimizing environmental and health issues related to nitrogen (N) losses through subsurface drainage systems provides suitable condition for sustainable agriculture in these fields. A field study was conducted to evaluate nitrogen loss and its health risk in the conventional and subsurface-drained paddy fields. Ammonium, nitrate, and total N concentrations of subsurface drainage effluents, surface runoff, and leachates were monitored during three successive rice-canola-rice growing seasons from July 2011 to August 2012. Different components of N balance and health risk of nitrate leaching to groundwater were also investigated. Ammonium in drainage effluents collected during the experimental period ranged from approximately zero to 1.72 mg L?1, while nitrate fluctuated from 0.5 to 28.6 mg L?1. Average nitrate concentration in leachates of subsurface-drained area was 7.7–81.4 % higher than that in subsurface drainage effluents, while it was 126.8 % higher than that in surface runoff for the conventional field. Subsurface drainage provided a better utilization of soil N through providing winter cropping and reduced the potential for non-carcinogenic risks of nitrate leaching to groundwater. The results are encouraging for producers engaged in rice-canola production in the study area with respect to the environment and human health quality.  相似文献   
136.
There is a growing concern about health hazards linked to nitrate (NO3) toxicity in groundwater due to overuse of nitrogen fertilizers in rice production systems of northern Iran. Simple-cost-effective methods for quick and reliable prediction of NO3 contamination in groundwater of such agricultural systems can ensure sustainable rural development. Using 10-year time series data, the capability of adaptive neuro-fuzzy inference system (ANFIS) and support vector machine (SVM) models as well as six geostatistical models was assessed for predicting NO3 concentration in groundwater and its noncarcinogenic health risk. The dataset comprised 9360 water samples representing 26 different wells monitored for 10 years. The best predictions were found by SVM models which decreased prediction errors by 42–73 % compared with other models. However, using well locations and sampling date as input parameters led to the best performance of SVM model for predicting NO3 with RMSE = 4.75–8.19 mg l?1 and MBE = 3.3–5.2 mg l?1. ANFIS models ranked next with RMSE = 8.19–25.1 mg l?1 and MBE = 5.2–13.2 mg l?1 while geostatistical models led to the worst results. The created raster maps with SVM models showed that NO3 concentration in 38–97 % of the study area usually exceeded the human-affected limit of 13 mg l?1 during different seasons. Generally, risk probability went beyond 90 % except for winter when groundwater quality was safe from nitrate viewpoint. Noncarcinogenic risk exceeded the unity in about 1.13 and 6.82 % of the study area in spring and summer, respectively, indicating that long-term use of groundwater poses a significant health risk to local resident. Based on the results, SVM models were suitable tools to identify nitrate-polluted regions in the study area. Also, paddy fields were the principal source of nitrate contamination of groundwater mainly due to unmanaged agricultural activities emphasizing the importance of proper management of paddy fields since a considerable land in the world is devoted to rice cultivation.  相似文献   
137.
This study was conducted to evaluate drought tolerance and persistence in a germplasm of smooth bromegrass and association of forage productivity with different traits. Thirty‐six genotypes of smooth bromegrass were clonally propagated and evaluated under two soil moisture environments for three years (2013–2015). High genotypic variation was observed among genotypes for all the measured traits. Drought stress decreased mean values for traits related to productivity. Also, the long‐term stress for three years reduced the persistence of plants. Results indicated that indirect selection based on components of forage yield, which had high heritability and high correlation with yield, would be more effective to improve drought tolerance in this germplasm. The results of principal component analysis showed that there was a negative relationship between phenological traits with the persistence‐related traits and yield production. This suggests that selection for earliness may indirectly promote persistent genotypes. The results showed that some Hungarian genotypes are valuable gene sources for persistence. The most persistent genotypes from both groups (Iranian and foreign) were identified using the biplot method. These genotypes may be useful for the development of populations for future studies.  相似文献   
138.
Background:Gastric cancer is the fourth most common human malignancy and the second reason for cancer morbidity worldwide. LncRNA HOTAIR has recently emerged as a promoter of metastasis in various cancer types, including GC, through the EMT process. However, the exact mechanism of HOTAIR in promoting EMT is unknown. Aberrant expression of the miR-200 family has been linked to the occurrence and development of various types of malignant tumors. This study investigates the correlation between the HOTAIR and miR-200 family gene expression patterns in GC cell lines. We investigated the miR-200 and HOTAIR due to their common molecular features in the EMT process. Methods:AGS and MKN45 cell lines were transfected with si-HOTAIR, along with a negative control. The effect of HOTAIR knockdown was also analyzed on cell viability and also on the expression of miR-200 family members, including miR-200a, -200b, and -200c, in cell lines using qRT-PCR. Statistical analysis was performed to find the potential correlation between the expression level of HOTAIR and miRs. Results:Our results showed significant increased miR-200 family expression level in transfected AGS and MKN45 GC cells (fold changes > 2; p < 0.001). Moreover, a negative correlation was observed between HOTAIR and miR-200 expression levels in GC cell lines (p < 0.05). Conclusion:Our findings showed a significant association between miR-200 family and HOTAIR expression levels in GC cell lines. Taken together, the HOTAIR-miR-200 axis seems to play a vital role in human GC, suggesting a potential therapeutic target in future GC treatment. Key Words: Gene expression, Long noncoding RNA, HOTAIR, MicroRNAs  相似文献   
139.
Background:In the present study, a tissue engineered SF scaffold containing simvastatin-loaded SFNPs were used to stimulate the regeneration of the defected bone.Methods:At first, the porous SF scaffold was prepared using freeze-drying. Then simvastatin-loaded SFNPs were made by dissolvation method and embedded in the SF scaffold. Afterwards, the scaffold and the NPs were characterized in terms of physicochemical properties and the ability to release the simvastatin small molecule.Results:The results exhibited that the SF scaffold had a porous structure suitable for releasing the small molecule and inducing the proliferation and attachment of osteoblast cells. SFNPs containing simvastatin had spherical morphology and were 174 ± 4 nm in size with -24.5 zeta potential. Simvastatin was also successfully encapsulated within the SFNPs with 68% encapsulation efficiency. Moreover, the small molecule revealed a sustained release profile from the NPs during 35 days. The results obtained from the in vitro cell-based studies indicated that simvastatin-loaded SFNPs embedded in the scaffold had acceptable capacity to promote the proliferation and ALP production of osteoblast cells while inducing osteogenic matrix precipitation. Conclusion:The SF scaffold containing simvastatin-loaded SFNPs could have a good potential to be used as a bone tissue-engineered construct.  相似文献   
140.
ABSTRACT

Meat products, such as fish meat, are known to be susceptible to undesirable chemical and microbial reactions that characterize spoilage. In this study, the effect of a sodium alginate and chitosan coating incorporated with Mentha piperita, Artemisia dracunculus, and Zataria multiflora essential oils on chemical and microbial attributes of rainbow trout meat was evaluated during storage at 4°C. Chemical and microbial assays were performed on rainbow trout fillets with alginate and chitosan coatings and 0.2% concentration of test essential oils. The results showed that the alginate coating with essential oils significantly decreased production of thiobarbituric acid (TBA) and total volatile basic nitrogen (TVBN) and reduced the growth of foodborne spoilage bacteria during storage at 4ºC. At day 12, the best results were obtained in chitosan coating + Z. multiflora, with 5.96 ± 0.12, 4.93 ± 0.12, and 3.83 ± 0.2 for total viable counts, psychrotrophic bacterial count, and lactic acid bacteria count, respectively. Moreover, the lowest amounts of chemical analysis were observed in chitosan coating + Z. multiflora at the final day (0.54 ± 0.03 and 20.31 ± 0.1 for TBA and TVBN, respectively). Our study revealed that essential oils can be used as effective natural components against undesirable chemical and microbial reactions in fish meat.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号