首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117篇
  免费   2篇
林业   20篇
  27篇
综合类   8篇
农作物   4篇
水产渔业   4篇
畜牧兽医   35篇
园艺   6篇
植物保护   15篇
  2021年   4篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2013年   15篇
  2011年   7篇
  2010年   6篇
  2009年   7篇
  2008年   4篇
  2007年   9篇
  2006年   6篇
  2005年   2篇
  2004年   3篇
  2003年   5篇
  2002年   7篇
  2001年   1篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1989年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
  1979年   1篇
  1977年   3篇
  1975年   2篇
  1972年   1篇
  1970年   1篇
  1969年   3篇
  1966年   1篇
  1962年   1篇
  1961年   1篇
  1953年   3篇
  1950年   3篇
  1933年   2篇
  1926年   1篇
  1924年   1篇
排序方式: 共有119条查询结果,搜索用时 15 毫秒
41.
Our landscape can be regarded as a development process that is affected and subsequently shaped by a series of different environmental and human-induced factors. However, to date, concrete data about the impact of each of these factors are still missing. One key reason for this is that methods of acquisition and evaluation of these factors inherently have differences, thereby preventing meaningful comparative analyses. This study presents an integrative methodical approach that bridges many of these gaps. Our approach also has the advantages of being generally applicable while delivering easily interpretable results that also allow comparisons between diverse geographical regions. The indicators used enable all major features of landscape change, e.g. changes in land use, landscape structuring, habitat settings, and urban sprawl, to be accurately monitored and provide high-quality realistic results that were validated in our study site, South Tyrol (North Italy). Indicators were selected for both their further subdivision, e.g. monocrops and different features of mixed crops, and their easy to ascertain hierarchically structured feature classification, e.g. land cover. Furthermore, our use of ecoregions enables better comparison of aspects of landscape development for geographical regions having diverse socio-economic and ecological conditions. Our methodical approach can be used as a basis not only for creating landscape change scenarios, but also for determining the environmental and human-induced factors involved and being able to list them in order of importance. Further the detected striking difference between the mapped land-use data and the official census data suggests a validation of the methodical approach in context of the national agriculture census.  相似文献   
42.

Context

Agroforestry systems in temperate Europe are known to provide both, provisioning and regulating ecosystem services (ES). Yet, it is poorly understood how these systems affect ES provision at a landscape scale in contrast to agricultural practises.

Objectives

This study aimed at developing a novel, spatially explicit model to assess and quantify bundles of provisioning and regulating ES provided by landscapes with and without agroforestry systems and to test the hypothesis that agroforestry landscapes provide higher amounts of regulating ES than landscapes dominated by monocropping.

Methods

Focussing on ES that are relevant for agroforestry and agricultural practices, we selected six provisioning and regulating ES—“biomass production”, “groundwater recharge”, “nutrient retention”, “soil preservation”, “carbon storage”, “habitat and gene pool protection”. Algorithms for quantifying these services were identified, tested, adapted, and applied in a traditional cherry orchard landscape in Switzerland, as a case study. Eight landscape test sites of 1 km?×?1 km, four dominated by agroforestry and four dominated by agriculture, were mapped and used as baseline for the model.

Results

We found that the provisioning ES, namely the annual biomass yield, was higher in landscape test sites with agriculture, while the regulating ES were better represented in landscape test sites with agroforestry. The differences were found to be statistically significant for the indicators annual biomass yield, groundwater recharge rate, nitrate leaching, annual carbon sequestration, flowering resources, and share of semi-natural habitats.

Conclusions

This approach provides an example for spatially explicit quantification of provisioning and regulating ES and is suitable for comparing different land use scenarii at landscape scale.
  相似文献   
43.
44.
45.
46.
Currently wood ash is being used as a soil amendment. Its use is regulated based on trace element content. However, no published information exists on solubilities of trace elements in wood ash. We investigated the release of environmentally-significant trace elements (Cd, Cr, Cu, Pb and Zn) from wood ash as a function of pH and of particle size. Wood ash was sampled from three sources in Maine and sieved into <0.5 mm, 0.5–1 mm, and 1–2 mm fractions. Elemental compositions were determined using a HNO3/H2O2 digestion. Sub-samples (1 g) from each of the nine samples (three sources and three size fractions) were reacted with 50 mLs of standardized HNO3 for a week using a range of acid concentrations (0.01–0.25 M) to achieve a range in final pH values. The resulting solutions were filtered and analyzed. The compositions of the three wood ashes varied widely. The dominant elements were Si (9.7–34%), Ca (5.8–21%), K (0.8–5.7%), Al (0.8–4.9%), and Mg (0.5–3.0%). Trace elements were present in the following concentrations ranges: Cd (1.9–12 mg kg?1), Cr (24–92 mg kg?1), Cu (33–75 mg kg?1), and Zn (130–1400 mg kg?1). Both Cd and Zn were released readily from the ashes at final pH values of approximately 6.5 and below. In the final pH range of 3–4, 80–100% of the total Cd and 70–90% of the total Zn was released by the ashes. All three wood ashes showed somewhat different patterns of Cr release. Level of Cr(VI) in a water extract of the ash fractions was found to be a much better predictor of relative Cr solubility than total Cr. Solubility of Cu was low, and Pb was very insoluble. There was little influence of particle size on release of trace elements. The relatively high Cd concentration of wood ash compared with soil, and its relative solubility in wood ash, should be considered in evaluating the potential environmental impact of spreading wood ash on land.  相似文献   
47.
48.
49.
Plant nitrogen (N) acquisition is strongly controlled by the concentration of available inorganic and organic N in the soil solution and by biogeochemical processes in the rhizosphere. However, until now it was hardly possible to reliably estimate plant-available N in soil microsites. Here, a novel microdialysis approach based on passive diffusion sampling is presented and compared qualitatively and quantitatively with lysimeter and soil extraction techniques when analyzing two contrasting boreal soils. Further, preliminary dialysis membrane calibration issues for sampling plant-available N compounds are discussed. Due to its miniaturized design microdialysis was shown to be a suitable tool for continuous sampling of ammonium, nitrate and free amino acids from the soil solution with only minimal disturbance of the soil structure. Microdialysis proved to be outstanding regarding the possible spatial (<0.5 mm) and temporal (<30 min) resolution of soil solution N chemistry. The different methods for soil N sampling resulted in significantly different results. In lysimeter and soil extraction samples, nitrate and ammonium were found at the highest concentrations, while results from microdialysis revealed that the pool of plant-available amino acids was contributing most to the total N pool tested. Application of a standard N solution to the tested soils led to an immediate peak of recovery via the microdialysis probes followed by a rapid decrease due to the formation of a depletion zone at the probe surfaces. Therefore, this relatively new technique will not only provide essential data on diffusion rates of a variety of N compounds in the soil but might be used for monitoring quantitative and qualitative changes in plant-available N in soil microsites such as the rhizosphere.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号