首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   489篇
  免费   11篇
林业   34篇
农学   21篇
基础科学   6篇
  128篇
综合类   45篇
农作物   12篇
水产渔业   30篇
畜牧兽医   185篇
园艺   11篇
植物保护   28篇
  2023年   3篇
  2022年   2篇
  2021年   8篇
  2020年   5篇
  2019年   7篇
  2018年   12篇
  2017年   6篇
  2016年   9篇
  2015年   6篇
  2014年   16篇
  2013年   20篇
  2012年   37篇
  2011年   42篇
  2010年   21篇
  2009年   21篇
  2008年   46篇
  2007年   42篇
  2006年   40篇
  2005年   30篇
  2004年   22篇
  2003年   22篇
  2002年   32篇
  2001年   9篇
  2000年   7篇
  1998年   3篇
  1997年   4篇
  1996年   4篇
  1995年   4篇
  1994年   3篇
  1993年   5篇
  1992年   4篇
  1990年   1篇
  1987年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1970年   1篇
  1969年   2篇
排序方式: 共有500条查询结果,搜索用时 15 毫秒
51.
In the natural forest communities of Central Europe, beech (Fagus sylvatica L.) predominates in the tree layer over a wide range of soil conditions. An exception with respect to the dominance of beech are skeleton‐rich soils such as screes where up to 10 broad‐leaved trees co‐exist. In such a Tilia‐Fagus‐Fraxinus‐Acer‐Ulmus forest and an adjacent mono‐specific beech forest we compared (1) soil nutrient pools and net nitrogen mineralization rates, (2) leaf nutrient levels, and (3) leaf litter production and stem increment rates in order to evaluate the relationship between soil conditions and tree species composition. In the mixed forest only a small quantity of fine earth was present (35 g l—1) which was distributed in patches between basalt stones; whereas a significantly higher (P < 0.05) soil quantity (182 g l—1) was found in the beech forest. In the soil patches of the mixed forest C and N concentrations and also concentrations of exchangeable nutrients (K, Ca, Mg) were significantly higher than in the beech forest. Net N mineralization rates on soil dry weight basis in the mixed forest exceeded those in the beech forest by a factor of 2.6. Due to differences in fine earth and stone contents, the volume related soil K pool and the N mineralization rate were lower in the mixed forest (52 kg N ha—1 yr—1, 0—10 cm depth) than in the beech forest (105 kg N ha—1 yr—1). The leaf N and K concentrations of the beech trees did not differ significantly between the stands, which suggests that plant nutrition was not impaired. In the mixed forest leaf litter fall (11 %) and the increment rate of stem basal area (52 %) were lower than in the beech forest. Thus, compared with the adjacent beech forest, the mixed forest stand was characterized by a low volume of patchy distributed nutrient‐rich soil, a lower volume related K pool and N mineralization rate, and low rates of stem increment. Together with other factors such as water availability these patterns may contribute to an explanation of the diverse tree species composition on Central European screes.  相似文献   
52.
Within different land‐use systems such as agriculture, forestry, and fallow, the different morphology and physiology of the plants, together with their specific management, lead to a system‐typical set of ecological conditions in the soil. The response of total, mobile, and easily available C and N fractions, microbial biomass, and enzyme activities involved in C and N cycling to different soil management was investigated in a sandy soil at a field study at Riesa, Northeastern Germany. The management systems included agricultural management (AM), succession fallow (SF), and forest management (FM). Samples of the mineral soil (0—5, 5—10, and 10—30 cm) were taken in spring 1999 and analyzed for their contents on organic C, total N, NH4+‐N and NO3‐N, KCl‐extractable organic C and N fractions (Corg(KCl) and Norg(KCl)), microbial biomass C and N, and activities of β‐glucosidase and L‐asparaginase. With the exception of Norg(KCl), all investigated C and N pools showed a clear relationship to the land‐use system that was most pronounced in the 0—5 cm profile increment. SF resulted in greater contents of readily available C (Corg(KCl)), NH4+‐N, microbial biomass C and N, and enzyme activities in the uppermost 5 cm of the soil compared to all other systems studied. These differences were significant at P ≤ 0.05 to P ≤ 0.001. Comparably high Cmic:Corg ratios of 2.4 to 3.9 % in the SF plot imply a faster C and N turnover than in AM and FM plots. Forest management led to 1.5‐ to 2‐fold larger organic C contents compared to SF and AM plots, respectively. High organic C contents were coupled with low microbial biomass C (78 μg g—1) and N contents (10.7 μg g—1), extremely low Cmic : Corg ratios (0.2—0.6 %) and low β‐glucosidase (81 μg PN g—1 h—1) and L‐asparaginase (7.3 μg NH4‐N g—1 2 h—1) activities. These results indicate a severe inhibition of mineralization processes in soils under locust stands. Under agricultural management, chemical and biological parameters expressed medium values with exception for NO3‐N contents which were significantly higher than in SF and FM plots (P ≤ 0.005) and increased with increasing soil depth. Nevertheless, the depth gradient found for all studied parameters was most pronounced in soils under SF. Microbial biomass C and N were correlated to β‐glucosidase and L‐asparaginase activity (r ≥ 0.63; P ≤ 0.001). Furthermore, microbial biomass and enzyme activities were related to the amounts of readily mineralizable organic C (i.e. Corg(KCl)) with r ≥ 0.41 (P ≤ 0.01), suggesting that (1) KCl‐extractable organic C compounds from field‐fresh prepared soils represent an important C source for soil microbial populations, and (2) that microbial biomass is an important source for enzymes in soil. The Norg(KCl) pool is not necessarily related to the size of microbial biomass C and N and enzyme activities in soil.<?show $6#>  相似文献   
53.

Purpose

The critical shear stress of cohesive and mixed cohesive/non-cohesive sediments is affected by multiple interacting physical, chemical and biological parameters. There are various mathematical approaches in the scientific literature for computing critical shear stress. However, processes that influence sediment stability are still not fully understood, and available formulas differ considerably. These discrepancies in the literature arise from random system behaviour (natural variability of the sediments), different definitions of the critical shear stress, different measurement techniques and different model frameworks (scope of the parameters, undisturbed versus artificial sediment samples). While analytical approaches fail to address the involved uncertainties, fuzzy logic-based models integrate uncertainty and imprecision.

Materials and methods

With this in mind, a data-driven neuro-fuzzy model (ANFIS) was used to determine the critical shear stress based on sediment characteristics such as wet bulk density and grain size distribution. In order to select model predictors systematically, an automated stepwise regression algorithm was applied. The database for this analysis consisted of 447 measurements of the critical shear stress originating from 64 undisturbed sediment samples.

Results and discussion

The study identified clay content as the primarily controlling variable for erosion resistance. Depending on the characteristics of the sampling location, the bulk density was also selected as a model predictor. In comparison to analytical models that are available in the scientific literature, the fuzzy model achieved higher correlation coefficients between measured and predicted data.

Conclusions

The neuro-fuzzy-model includes uncertainties of input variables and their interactions directly. Thus, it provides a reliable method for the prediction of erosion thresholds of cohesive/non-cohesive mixtures. It was also shown that this approach requires fewer measured variables as well as fewer assumptions than the models it was compared to.
  相似文献   
54.
The living soil is instrumental to key life support functions (LSF) that safeguard life on Earth. The soil microbiome has a main role as a driver of these LSF. Current global developments, like anthropogenic threats to soil (e.g., via intensive agriculture) and climate change, pose a burden on soil functioning. Therefore, it is important to dispose of robust indicators that report on the nature of deleterious changes and thus soil quality. There has been a long debate on the best selection of biological indicators (bioindicators) that report on soil quality. Such indicators should ideally describe organisms with key functions in the system, or with key regulatory/connecting roles (so-called keystone species). However, in the light of the huge functional redundancy in most soil microbiomes, finding specific keystone markers is not a trivial task. The current rapid development of molecular (DNA-based) methods that facilitate deciphering microbiomes with respect to key functions will enable the development of improved criteria by which molecular information can be tuned to yield molecular markers of soil LSF. This review critically examines the current state-of-the-art in molecular marker development and recommends avenues to come to improved future marker systems.  相似文献   
55.

-

Part I: Determination and identification of organic pollutants Part II: Results of the biotest battery and development of a biotest index

-

Preamble. This series of two papers presents the results of an interdisciplinary research project (ISIS) dealing with bioassay-directed fractionation of marine sediment extracts. Part I presents the extraction and fractionation procedure as well as the results of chemical analysis, including non-target analysis of sediments. Part II describes the results of the biotest battery in relation to chemicals possibly causing parts of the observed effects. A biotest index is used to compare the toxicities of the samples.

-

AUTHORS / AFFILIATIONS Ninja Reineke (3), Werner Wosniok (4), Dirk Danischewski (1), Heinrich Hühnerfuss (3), Angelika Kinder (5), Arne Sierts-Herrmann (5), Norbert Theobald (2), Hans-Heinrich Vahl (6), Michael Vobach (1), Johannes Westendorf (6) and Hans Steinhart (5).

-

(1) Federal Research Centre for Fisheries, Institute for Fishery Ecology, Palmaille 9, 22767 Hamburg, Germany (2) Federal Maritime and Hydrographic Agency, Bernhard-Nochtstr. 78, 20359 Hamburg, Germany (3) University of Hamburg, Institute for Organic Chemistry, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany (4) University of Bremen, Institute of Statistics, Bibliothekstr. 1, 28334 Bremen, Germany (5) University of Hamburg, Institute for Food Chemistry, Grindelallee 117, 20146 Hamburg, Germany (6) University of Hamburg, University Hospital Hamburg-Eppendorf, Department for Toxicology, Vogt-Kölln-Str. 30, 22527 Hamburg, Germany (7) Eurofins Wiertz-Eggert-Jörissen, Stenzelring 14b, 21107 Hamburg, Germany

Goal, Scope and Background

The ecological relevance of contaminants in mixtures is difficult to assess, because of possible interactions and due to lacking toxicity data for many substances present in environmental samples. Marine sediment extracts, which contain a mixture of environmental contaminants in low concentrations, were the object of this study. The extracts were investigated with a set of different biotests in order to identify the compound or the substance class responsible for the toxicity. For this goal, a combination of biotests, biotest-directed fractionation and chemical analysis has been applied. Further on, a strategy for the development of a biotest index to describe the toxicity of the fractions without a prior ranking of the test results is proposed. This article (Part II) focuses on the biological results of the approach.

Methods

The toxicological potential of organic extracts of sediments from the North Sea and the Baltic Sea was analyzed in a bioassay-directed fractionation procedure with a set of biotests: luciferase reporter gene assays on hormone receptor and Ah receptor, arabinose resistance test, fish embryo test (Danio rerio), comet assay, acetylcholinesterase inhibition test, heat-shock protein 70 induction, oxidative stress and luminescence inhibition test (Vibrio fischeri). The test results provided the basis for the calculation of a biotest index by factor analysis to compare the toxicity of the samples and fractions.

Results and Discussion

Results of 11 biotests on different fractionation levels of the samples were described and discussed with regard to the occurrence of contaminants and their toxic potentials. Polychlorinated biphenyls, polycyclic aromatic hydrocarbons, quinones, brominated indoles and brominated phenols were in the focus of interest. A biotest index was constructed to compare the toxic responses in the samples and to group the biotest results.

Conclusion

The procedure presented in this study is well suited for bioassay-directed fractionation of marine sediment extracts. However, in relatively low contaminated samples, high enrichment factors and sufficient fractionation is necessary to allow identification of low concentrations of contaminants which is required to link effects and possible causes. In the present case, the relation between substances and effects was difficult to uncover due to relatively low concentrations of pollutants compared to the biogenic matrix and to the remaining complexity of the fractions. The results, with respect to the brominated phenols and indoles in the samples, highlight the successful use of bioassay directed fractionation in the case of high concentrations and high toxicity.

Recommendation and Outlook

In general, it has been shown that a marine risk assessment requires focusing on the input of diffuse sources and taking into account the fact of mixture toxicity. Effects resulting from biogenic substances will make the assessment of the influence of anthropogenic substances even more difficult.  相似文献   
56.
Climatic changes and elevated atmospheric CO2 concentrations will affect crop growth and production in the near future. Rising CO2 concentration is a novel environmental aspect that should be considered when projections for future agricultural productivity are made. In addition to a reducing effect on stomatal conductance and crop transpiration, elevated CO2 concentration can stimulate crop production. The magnitude of this stimulatory effect (‘CO2 fertilization’) is subject of discussion. In this study, different calculation procedures of the generic crop model AquaCrop based on a foregoing theoretical framework and a meta-analysis of field responses, respectively, were evaluated against experimental data of free air CO2 enrichment (FACE) environments. A flexible response of the water productivity parameter of the model to CO2 concentration was introduced as the best option to consider crop sink strength and responsiveness to CO2. By varying the response factor, differences in crop sink capacity and trends in breeding and management, which alter crop responsiveness, can be addressed. Projections of maize (Zea mays L.) and potato (Solanum tuberosum L.) production reflecting the differences in responsiveness were simulated for future time horizons when elevated CO2 concentrations and climatic changes are expected. Variation in future yield potential associated with sink strength could be as high as 27% of the total production. Thus, taking into account crop sink strength and variation in responsiveness is equally relevant to considering climatic changes and elevated CO2 concentration when assessing future crop production. Indicative values representing the crop responsiveness to elevated CO2 concentration were proposed for all crops currently available in the database of AquaCrop as a first step in reducing part of the uncertainty involved in modeling future agricultural production.  相似文献   
57.
Woodpastures (open, grazed woodlands with a mosaic of grassland, shrub and tree patches) are of high biological and cultural value and have become a threatened ecosystem in Europe. Spontaneous tree regeneration in the presence of large herbivores, is an essential process for management and restoration of this structurally diverse habitat. We examined the suitability of five vegetation types (grasslands, ruderal vegetations, tall sedges, rush tussocks and bramble thickets), grazed by large herbivores, for tree regeneration. We hypothesized that bramble thickets and tall herb communities operate as safe sites for palatable tree species through the mechanism of associational resistance. We set up a field experiment with tree seedlings in grazed and ungrazed conditions and recorded mortality and growth of seedlings of two palatable tree species (Quercus robur and Fraxinus excelsior) during three growing seasons. In the same experiment, we studied the effect of a two year’s initial time gap before grazing.Bramble thickets were suitable safe sites for survival and growth of seedlings of both species. Tall sedges, soft rush tussocks and ruderal vegetations with unpalatable or spiny species provided temporal protection, allowing seedlings to survive. Tree regeneration in livestock grazed grassland was highly constrained. Rabbits may undo the nursing effects of bramble thickets. The first year’s survival is of major importance for the establishment of trees. Subsequent grazing affects growth rather than survival. A two year’s initial time gap before grazing, had positive effects on survival, but did not enhance outgrowth of unprotected trees.  相似文献   
58.
Pectenotoxins from marine dinoflagellates of the genus Dinophysis are rapidly hydrolyzed by many shellfish to give pectenotoxin-2 seco acid, which isomerizes to 7-epi-pectenotoxin-2 seco acid. Three series of fatty acid esters of pectenotoxin-2 seco acid (PTX-2 seco acid) and 7-epi-PTX-2 seco acid were detected by LC-MS analysis of extracts from blue mussels (Mytilus edulis) from Ireland. The locations of the fatty acid ester linkages were identified by a combination of LC-MSn in positive- and negative-ion modes, LC-MS analysis of the products from reaction of the esters with sodium periodate, and NMR analysis of purified samples of the two most abundant ester derivatives. The 37-O-acyl esters of PTX-2 seco acid were the most abundant, followed by the corresponding 11-O-acyl esters, accompanied by low levels of the 33-O-acyl esters. The most abundant fatty acid esters in the fractionated sample were, in order, the 16:0, 22:6, 14:0, 16:1, 18:4, and 20:5 fatty acids, although a wide array of other PTX-2 seco acid fatty acid esters were also present at low levels.  相似文献   
59.
The opiate alkaloids present in poppy seed intended for use in food recently have raised major concerns. An efficient method for routine analysis of morphine and codeine using liquid chromatography in combination with tandem mass spectrometry on a triple quadrupole instrument (LC/MS/MS) was therefore developed. The optimal sample preparation was found to be cold extraction of 10 g of unground poppy seed with 30 mL of methanol containing 0.1% acetic acid for 60 min shaken at 250 rpm. The fate of morphine during food processing was also studied. All experiments led to a significant reduction of morphine and codeine. For poppy cake only 16-50% of the morphine was recovered, and in poppy buns at the highest temperature (220 degrees C) only 3% of the original morphine content was found. Ground poppy seed showed significantly lower recoveries than untreated seed. Morphine elimination during food processing has to be taken into account in the current discussion about its maximum limits in poppy seed.  相似文献   
60.
In this study, the effect of an arbuscular mycorrhizal fungus (AMF) and two migratory endoparasitic nematodes on Musa plant growth, including the root system, were examined. In addition, the AMF-nematode interaction was studied. Seven Musa genotypes with different root systems were selected. Based on their relative mycorrhizal dependency, two genotypes (Calcutta 4 and Obino l'Ewai) were selected for AMF-nematode interaction studies. The experiments were performed under greenhouse conditions. Mycorrhization with Glomus mosseae resulted in a significantly better plant growth even in the presence of nematodes. The effect of AMF on the root system was genotype-dependent and seemed to be related to the relative mycorrhizal dependency of the genotype. The nematodes also affected the root system, decreasing branching. Nematode population densities were significantly reduced in the presence of AMF, except for Pratylenchus coffeae in Obino l'Ewai. In the root system, it appeared that the decreased branching caused by the nematodes was counterbalanced by the increased branching caused by the AMF.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号