全文获取类型
收费全文 | 766篇 |
免费 | 51篇 |
专业分类
林业 | 60篇 |
农学 | 19篇 |
149篇 | |
综合类 | 22篇 |
农作物 | 48篇 |
水产渔业 | 76篇 |
畜牧兽医 | 375篇 |
园艺 | 11篇 |
植物保护 | 57篇 |
出版年
2024年 | 2篇 |
2023年 | 5篇 |
2022年 | 27篇 |
2021年 | 64篇 |
2020年 | 55篇 |
2019年 | 50篇 |
2018年 | 43篇 |
2017年 | 40篇 |
2016年 | 46篇 |
2015年 | 20篇 |
2014年 | 37篇 |
2013年 | 52篇 |
2012年 | 55篇 |
2011年 | 57篇 |
2010年 | 29篇 |
2009年 | 26篇 |
2008年 | 42篇 |
2007年 | 38篇 |
2006年 | 26篇 |
2005年 | 25篇 |
2004年 | 33篇 |
2003年 | 11篇 |
2002年 | 17篇 |
2001年 | 2篇 |
2000年 | 8篇 |
1999年 | 2篇 |
1992年 | 1篇 |
1990年 | 3篇 |
1972年 | 1篇 |
排序方式: 共有817条查询结果,搜索用时 0 毫秒
811.
R. F. Vieira E. J. B. N. Cardoso C. Vieira S. T. A. Cassini 《Journal of plant nutrition》2013,36(1):169-180
Although common bean (Phaseolus vulgaris L.) has a good potential for N2 fixation, poor nodulation following inoculation, principally under field conditions, has led to increased nitrogen (N) fertilizer use in this crop. In the face of the negative environmental effects of N fertilizer, alternative methods have been studied to minimize the amount to be applied. In this sense, foliar application of molybdenum (Mo) has been cited as a promising method. Several papers show that high bean yields (1,500–2,500 kg ha‐1), may be obtained in the southeasten region of Brazil, when there is an application of N as side dressing or Mo spray 25 days after plant emergence. A field experiment was carried out to verify the effect of Mo foliar application on nitrogenase and nitrate reductase activities and on bean yield. Treatments included Rhizobium inoculation (with and without), foliar application of Mo (0 and 40 g ha‐1), N at planting (0 and 20 kg ha‐1) and N applied as side dressing (0 and 30 kg ha‐1). Molybdenum and N as side dressing were used 25 days after plant emergence. Molybdenum increased greatly the nitrogenase activity and extended the period of high nitrate reductase activity, with a consequent increase in total shoot N. Increase of nitrogenase activity did not depend on inoculation, showing that soil native rhizobia may increase in effectiveness when appropriately handled. Bean yield did not differ significantly when fertilized with either Mo or N as side dressing. 相似文献
812.
R. F. Vieira C. Vieira E. J. B. N. Cardoso P. R. Mosquim 《Journal of plant nutrition》2013,36(10):2141-2151
Foliar application of molybdenum (Mo) at 40 g ha‐1 25 days after plant emergence greatly enhanced nitrogenase and nitrate reductase activities of common bean (Phaseolus vulgaris L.), resulting in an increase in total nitrogen (N) accumulation in shoots. Application of 20 kg N ha‐1 as ammonium sulfate [(NH4)2SO4] at sowing decreased nodulation and nitrogenase activity. Rhizobium inoculation did not affect nitrogenase activity which demonstrated that Mo application increased the efficiency of native Rhizobia strains. Nitrogen amendment, either at planting (20 kg N ha‐1) or as a side dressing (30 kg N ha‐1) 25 days after plant emergence, did not affect the foliar nitrate reductase activity. Molybdenum foliar spray as ammonium molybdate [(NH4)6Mo7O242H2O] and N applied as a side dressing increased equally the total amount of N in the pods. A 10% increase in the seed N concentration was obtained with foliar application of Mo, while N applied as a side dressing had no effect on seed N concentration. An average increase of 41% in N export to the seeds was obtained by either Mo or N as side dressing. Nitrogen applied at sowing or Rhizobia inoculation had no effect on the characteristics evaluated 74 days after plant emergence. Plants that received either Mo as foliar spray or as side dressed N had similar yields. This demonstrated that, in certain soils, N fertilization may be replaced by a small amount of Mo as a foliar application. 相似文献
813.
Libardi SH Borges JC Skibsted LH Cardoso DR 《Journal of agricultural and food chemistry》2011,59(11):6202-6208
Vanillin was found to be efficient as a deactivator of ferrylmyoglobin with a second-order rate constant of k(2) = 57 ± 1 L mol(-1) s(-1) for reduction to metmyoglobin with ΔH(?) = 58.3 ± 0.3 kJ mol(-1) and ΔS(?) = -14 ± 1 J mol(-1) K(-1) in aqueous pH 7.4 solution at 25 °C. Binding to β-lactoglobulin (βLG) was found to affect the reactivity of vanillin at 25 °C only slightly to k(2) = 48 ± 2 L mol(-1) s(-1) (ΔH(?) = 68.4 ± 0.4 kJ mol(-1) and ΔS(?) = 17 ± 1 J mol(-1) K(-1)) for deactivation of ferrylmyoglobin. Binding of vanillin to βLG was found to have a binding stoichiometry vanillin/βLG > 10 with K(A) = 6 × 10(2) L mol(-1) and an apparent total ΔH° of approximately -38 kJ mol(-1) and ΔS° = -55.4 ± 4 J mol(-1) K(-1) at 25 °C and ΔC(p, obs) = -1.02 kJ mol(-1) K(-1) indicative of increasing ordering in the complex, as determined by isothermal titration microcalorimetry. From tryptophan fluorescence quenching for βLG by vanillin, approximately one vanillin was found to bind to each βLG far stronger with K(A) = 5 × 10(4) L mol(-1) and a ΔH° = -10.2 kJ mol(-1) and ΔS° = 55 J mol(-1) K(-1) at 25 °C. The kinetic entropy/enthalpy compensation effect seen for vanillin reactivity by binding to βLG is concluded to relate to the weakly bound vanillin oriented through hydrogen bonds on the βLG surface with the phenolic group pointing toward the solvent, in effect making both ΔH(?) and ΔS(?) more positive. The more strongly bound vanillin capable of tryptophan quenching in the βLG calyx seems less or nonreactive. 相似文献
814.
The antifungal activity on Botrytis cinerea of the diterpenoids 3beta-hydroxy-kaurenoic acid and kaurenoic acid, obtained from the resinous exudates of Pseudognaphalium vira vira, was determined. 3beta-Hydroxy-kaurenoic acid reduced the mycelial growth of B. cinerea in solid and liquid media. Additionally, the damage produced by the fungus on the surface of tomato leaves in the presence of the diterpenoids was evaluated. A higher protective effect was observed in the presence of the hydroxylated diterpene. On the other hand, the effect of the diterpenoids on the production of enzymes that participate in the plant infection by B. cinerea was analyzed. p-Nitrophenylbutyrate esterase production was induced by both diterpenoids, whereas laccase production was only induced by the hydroxylated diterpene. In the study of the mechanism of action of these compounds, it was determined that 3beta-hydroxy-kaurenoic acid would produce permeabilization of the cell membrane of B. cinerea. 相似文献
815.
Kebede-Westhead E Pizarro C Mulbry WW 《Journal of agricultural and food chemistry》2004,52(24):7293-7296
The cultivation of algae on nitrogen (N) and phosphorus (P) in animal manure effluents presents an alternative to the current practice of land application. However, the use and value of the resulting algal biomass as a feed or soil supplement depend, in part, on whether the biomass contains any harmful components such as heavy metals. The objective of this study was to determine how the elemental composition of algae changed in response to different loading rates of anaerobically digested flushed dairy manure effluent. Algal biomass was harvested weekly from laboratory-scale algal turf scrubber (ATS) units using four manure loading rates (2, 4, 6, or 9 L m(-2) day(-1)) corresponding to daily loading rates of 0.8-3.7 g of total N and 0.12-0.58 g of total P. Mean N and P contents in the dried biomass increased 1.6-1.8-fold with increasing loading rate up to maximums of 6.5% N and 0.84% P at 6 L m(-2) day(-1). Concentrations of Al, Ca, Cu, Fe, Mg, Mn, and Zn showed similar 1.4-1.8-fold increases up to maximums at a loading rate of 6 L m(-2) day(-1), followed by plateaus or decreases above this loading rate. Concentrations of Cd, Mo, and Pb initially increased with loading rate but then declined to levels comparable to those at the lowest loading rate. Concentrations of Si and K did not increase significantly with loading rate. The maximum concentrations of individual components in the algal biomass were as follows (in mg kg(-)(1)): 1100 (Al), 9700 (Ca), 0.43 (Cd), 56 (Cu), 580 (Fe), 5.0 (Pb), 2300 (Mg), 240 (Mn), 3.0 (Mo), 14,700 (K), 210 (Si), and 290 (Zn). At these concentrations, heavy metals in the algal biomass would not be expected to reduce its value as a soil or feed amendment. 相似文献
816.
Bono MF Mangold AJ Baravalle ME Valentini BS Thompson CS Wilkowsky SE Echaide IE Farber MD Torioni de Echaide SM 《Veterinary parasitology》2008,157(3-4):203-210
Bovine babesiosis is caused by Babesia bovis and B. bigemina in Argentina. These protozoans are prevalent north of parallel 30 degrees S, where their natural vector Rhipicephalus (Boophilus) microplus is widespread. To prevent babesiosis outbreaks in endemic areas, an increasing population of 4-10-month-old calves are vaccinated with low virulence B. bovis R1A (BboR1A) and B. bigemina S1A (BbiS1A) strains. In non-endemic areas, an additional calf population is also vaccinated and boostered as adults, before they are relocated to R. microplus-endemic areas of the country. Serological tests are currently utilized not only to determine the status of natural Babesia spp. infections, but also to confirm the infection caused by vaccine strains. For this purpose, an indirect enzyme immunoassay (ELISA) based on the recombinant major surface antigen-2c (rMSA-2c) of B. bovis expressed in Escherichia coli, was standardized using sera from Babesia spp. experimentally infected cattle. ELISA(rMSA-2c) was validated using sera obtained weekly during 336 days from steers primed and boostered with BboR1A and/or BbiS1A on days 0 and 154, then compared with the immunofluorescent-antibody test (IFAT). Western blot (WB) protein analysis was used to confirm the specificity of the immune response to rMSA-2c. The sensitivity and specificity for ELISA(rMSA-2c) were 92 and 96% after the Babesia spp. priming and 88 and 73% after the boostering immunization, respectively. The sensitivity and specificity for IFAT were 99 and 90% after priming and 92 and 98% after boostering, respectively. Unlike IFAT, ELISA(rMSA-2c) detected a remarkable delayed booster response and a significant drop in specificity between 35 and 84 days after the booster immunization. Simultaneously, 87.5% of cattle boostered with B. bigemina showed cross-reactions in the ELISA(rMSA-2c), particularly between 63 and 77 days after the inoculation. A reaction against E. coli was observed, since bands of approximately 40 and/or 42kDa were detected using sera from cattle before and after Babesia spp. inoculations. ELISA(rMSA-2c) showed to be useful between 42 and 98 days after priming with Babesia spp. live vaccine to evaluate the success of infecting cattle. However, after boostering the test showed low specificity. 相似文献
817.
Effect of storage conditions on subpopulations of peripheral blood T lymphocytes isolated from naïve cattle and cattle infected with foot‐and‐mouth disease virus 下载免费PDF全文