首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19674篇
  免费   152篇
  国内免费   3篇
林业   3848篇
农学   1727篇
基础科学   224篇
  3582篇
综合类   791篇
农作物   2336篇
水产渔业   1898篇
畜牧兽医   2070篇
园艺   1217篇
植物保护   2136篇
  2023年   23篇
  2022年   40篇
  2021年   52篇
  2020年   90篇
  2019年   91篇
  2018年   2825篇
  2017年   2801篇
  2016年   1289篇
  2015年   148篇
  2014年   118篇
  2013年   329篇
  2012年   927篇
  2011年   2266篇
  2010年   2208篇
  2009年   1353篇
  2008年   1412篇
  2007年   1700篇
  2006年   181篇
  2005年   212篇
  2004年   173篇
  2003年   237篇
  2002年   134篇
  2001年   69篇
  2000年   94篇
  1999年   59篇
  1998年   42篇
  1997年   44篇
  1996年   36篇
  1995年   37篇
  1994年   29篇
  1993年   41篇
  1992年   37篇
  1991年   37篇
  1990年   36篇
  1989年   47篇
  1988年   57篇
  1987年   37篇
  1986年   35篇
  1985年   25篇
  1984年   26篇
  1983年   29篇
  1982年   24篇
  1980年   35篇
  1979年   40篇
  1978年   22篇
  1971年   22篇
  1970年   39篇
  1969年   31篇
  1968年   29篇
  1967年   22篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
121.
The research comprised of studying the effect composting sewage sludge with sawdust and vermicomposting with earthworm Eisenia fetida has on the degradation of 16 polycyclic aromatic hydrocarbons (PAHs). Raw rural sewage sludge prior composting was more contaminated with PAHs than urban sewage sludge, in both cases exceeding EU cutoff limits of 6 mg/kg established for land application. Dibenzo[a,h]anthracene (DBahAnt), acenaphtylene (Acy) and indeno[1,2,3-c,d]pyrene (IPyr) were predominant in rural sewage sludge, whilst the urban sewage sludge contained the highest concentrations of benzo[b]fluoranthene (BbFl), benzo[k]fluoranthene (BkFl) and indeno[1,2,3-c,d]pyrene (IPyr). Thirty days of composting with sawdust has caused a significant reduction of 16 PAHs on average from 26.07 to 4.01 mg/kg (84.6%). During vermicomposting, total PAH concentration decreased on average from 15.5 to 2.37 mg/kg (84.7%). Vermicomposting caused full degradation of hydrocarbons containing 2 and 6 rings and significant reduction of PAHs with 3 aromatic rings (94.4%) as well as with 5 aromatic rings (83.2%). The lowest rate of degradation (64.4%) was observed for hydrocarbons with 4 aromatic rings such as fluoranthene, benzo(a)anthracene, chrysene and pyrene. On the other hand, the highest level of degradation was determined for PAHs with 2 rings (100%), 3 rings (88%) and 6 aromatic rings in the molecule (86.9%) after composting with sawdust. Acenaphthene and pyrene were found to be the most resistant to biodegradation during both composting methods.  相似文献   
122.

Purpose

Remediation of metal contaminated soil with biochar is attracting extensive interest in recent years. Understanding the significance of variable biochar properties and soil types helps elucidating the meticulous roles of biochar in immobilizing/mobilizing metals/metalloids in contaminated soils.

Materials and methods

Six biochars were produced from widely available agricultural wastes (i.e., soybean stover, peanut shells and pine needles) at two pyrolysis temperatures of 300 and 700 °C, respectively. The Pb-, Cu-, and Sb-contaminated shooting range soils and Pb-, Zn-, and As-contaminated agricultural soils were amended with the produced biochars. The mobility of metals/metalloids was assessed by the standard batch leaching test, principal component analysis and speciation modeling.

Results and discussion

The changes in soil properties were correlated to feedstock types and pyrolysis temperatures of biochars based on the principal component analysis. Biochars produced at 300 °C were more efficient in decreasing Pb and Cu mobility (>93 %) in alkaline shooting range soil via surface complexation with carboxyl groups and Fe-/Al-minerals of biochars as well as metal-phosphates precipitation. By contrast, biochars produced at 700 °C outperformed their counterparts in decreasing Pb and Zn mobility (100 %) in acidic agricultural soil by metal-hydroxides precipitation due to biochar-induced pH increase. However, Sb and As mobility in both soils was unfavorably increased by biochar amendment, possibly due to the enhanced electrostatic repulsion and competition with phosphate.

Conclusions

It is noteworthy that the application of biochars is not equally effective in immobilizing metals or mobilizing metalloids in different soils. We should apply biochar to multi-metal contaminated soil with great caution and tailor biochar production for achieving desired outcome and avoiding adverse impact on soil ecosystem.
  相似文献   
123.

Purpose

Chemical protection facilitates soil organic carbon (SOC) sequestration and stabilisation due to a strong chemical binding with mineral surfaces and metal ions (e.g. iron [Fe], aluminium [Al] and calcium [Ca]). However, there is not much information regarding the role of chemical protection in SOC stabilisation in paddy soils, particularly in terms of the specific forms of organo-mineral complexes such as Fe-, Al- and Ca-bonded OC.

Materials and methods

We sampled paddy soils at the 0–20 cm soil layer from a long-term field experiment (initiated in 1981) conducted under humid subtropical conditions in China, which has five fertilisation treatments (i.e. control treatment without fertiliser [CK], chemical fertiliser only [CF], green manure [GM], Straw and Manure) with equivalent nutrient inputs (i.e. N, P2O5 and K2O at the rates of 135–67.5–135 kg ha?1, respectively, for both early and late rice) except CK. We determined the chemical binding forms of SOC and the associated soil properties in the particulate fraction (PF, >53 μm) and the mineral-associated fraction (MAF, <53 μm), which were obtained using a low-energy ultrasonic dispersion procedure, of a paddy soil in the long-term fertilisation experiment.

Results and discussion

Iron- and Al-bonded OC (Fe/Al-OC) was the dominant fraction and made up 55–70% of the total SOC in the paddy soil, while Ca-bonded OC (Ca-OC) was only a minor fraction (<4%). The Fe/Al-OC was mainly allocated in the MAF (52–67%), indicating that the chemical protection of SOC occurred mostly in the finer particle fractions. Long-term application of organic amendments increased the contents of bulk SOC by 27–34% (P < 0.05), of Fe/Al-OC by 9–16% and of Ca-OC by 35–83% (P < 0.05), whereas the sole application of chemical fertiliser had no significant effects on SOC contents of the paddy soil compared with the treatment without fertiliser inputs. Both amorphous Fe and Al extracted by ammonium oxalate (Feox and Alox) showed significant correlations with Fe/Al-OC (r = 0.52 and 0.78, respectively), but Alox appeared to have a greater influence on C stabilisation in the paddy soil.

Conclusions

These results demonstrated that the dominant chemical binding forms of SOC in the paddy soils were Fe/Al-OC and amorphous Fe/Al oxyhydrates, especially amorphous Al, contributed mostly to the chemical stabilisation of SOC.
  相似文献   
124.
Soil nitrogen (N) loss related to surface flow and subsurface flow (including interflow and groundwater flow) from slope lands is a global issue. A lysimetric experiment with three types of land cover (grass cover, GC; litter cover, LC; and bare land, BL) were carried out on a red soil slope land in southeast China. Total Nitrogen (TN) loss through surface flow, interflow and groundwater flow was observed under 28 natural precipitation events from 2015 to 2016. TN concentrations from subsurface flow on BL and LC plots were, on average, 2.7–8.2 and 1.5–4.4 times greater than TN concentrations from surface flow, respectively; the average concentration of TN from subsurface flow on GC was about 36–56% of that recorded from surface flow. Surface flow, interflow and groundwater flow contributed 0–15, 2–9 and 76–96%, respectively, of loss load of TN. Compared with BL, GC and LC intercepted 83–86% of TN loss through surface runoff; GC intercepted 95% of TN loss through subsurface flow while TN loss through subsurface flow on LC is 2.3 times larger than that on BL. In conclusion, subsurface flow especially groundwater flow is the dominant hydrological rout for N loss that is usually underestimated. Grass cover has the high retention of N runoff loss while litter mulch will increase N leaching loss. These findings provide scientific support to control N runoff loss from the red soil slope lands by using suitable vegetation cover and mulching techniques.  相似文献   
125.
A highly effective zirconium-modified activated sludge (Zr(IV)-AS) adsorbent was prepared from activated sludge and applied to remove phosphate from aqueous solutions by batch and column experiments. Characterized results revealed that zirconium was successfully loaded onto the activated sludge (AS), and the specific surface area and pore volume were substantially improved after zirconium loading on the AS. Zr(IV)-AS exhibited a high adsorption affinity for phosphate and the maximum adsorption amount was 27.55 mg P·g?1 at 25 °C. Adsorption isotherms of phosphate could be described by the Langmuir model, and the adsorption kinetics were well described by the pseudo-second-order model. Phosphate adsorption on Zr(IV)-AS increased monotonically with decreasing solution pH. The presence of SO42? in water resulted in slightly decreased phosphate adsorption on the adsorbent even at a high concentration (25 mmol/L), and a greater influence of HCO3? on adsorption could be ascribed to the increased solution pH with the addition of the HCO3?. Column adsorption experimental results showed that the adsorbent has excellent phosphate adsorption properties and that the effluent can meet the requirement of phosphorus in the national wastewater discharge standard of China. Phosphate-saturated Zr(IV)-AS can be effectively desorbed in 0.1 mol L?1 NaOH solution, and the regenerated adsorbent still possessed the high capacity. The adsorption between the adsorbent and the phosphate is due to the electrostatic interaction and anionic exchange at the surface of the Zr(IV)-AS. Furthermore, this approach provides a possibility of treating wastewater with waste and has the potential for industrial applications for the removal of phosphate from wastewater.  相似文献   
126.

Purpose

The study aimed at comparing the effects of different water managements on soil Cd immobilization using palygorskite, which was significant for the selection of reasonable water condition.

Materials and methods

Field experiment was taken to discuss the in situ remediation effects of palygorskite on Cd-polluted paddy soils, under different water managements, using a series of variables, including pH and extractable Cd in soils, plant Cd, enzyme activity, and microorganism number in soils.

Results and discussion

In control group, the pH in continuous flooding was the highest under three water conditions, and compared to conventional irrigation, continuous flooding reduced brown rice Cd by 37.9%, and brown rice Cd in wetting irrigation increased by 31.0%. In palygorskite treated soils, at concentrations of 5, 10, and 15 g kg?1, brown rice Cd reduced by 16.7, 44.4, and 55.6%; 13.8, 34.5, and 44.8%; and 13.1, 36.8, and 47.3% under continuous flooding, conventional irrigation, and wetting irrigation (p < 0.05), respectively. The enzyme activity and microbial number increased after applying palygorskite to paddy soils.

Conclusions

Continuous flooding was a good candidate as water management for soil Cd stabilization using palygorskite. Rise in soil enzyme activity and microbial number proved that ecological function regained after palygorskite application.
  相似文献   
127.
Grain legumes, the important constituents of sustainability‐based cropping systems and energy‐limited vegetarian diets have long been the subject of scientific research. Tremendous technological strides were made in the so‐called orphan crops, in terms of both varietal improvement and generation of basic information. Despite recalcitrancy and high genotype dependency, in vitro culture techniques such as organogenesis, in vitro mutagenesis, embryo rescue and in vitro gene transfer have been deployed for improvement of several grain legumes and these played an important role in introgression of desirable genes from related and distant species and creation of additional genetic variability. Stable and reproducible regeneration protocols resulted in the development of genetically modified chickpea, pigeon pea, cowpea, mungbean, etc., while embryo rescue was deployed successfully for recovery of interspecific recombinants, a few of them exploited for the development of commercial cultivars. Nevertheless, doubled haploidy witnessed limited success and protoplast regeneration and in vitro mutagenesis remained of academic interest. The present review focuses on the progress, achievements, constraints and perspectives of using in vitro technology in grain legume improvement.  相似文献   
128.
Chickpea is the most important pulse crop globally after dry beans. Climate change and increased cropping intensity are forcing chickpea cultivation to relatively higher temperature environments. To assess the genetic variability and identify heat responsive traits, a set of 296 F8–9 recombinant inbred lines (RILs) of the cross ICC 4567 (heat sensitive) × ICC 15614 (heat tolerant) was evaluated under field conditions at ICRISAT, Patancheru, India. The experiment was conducted in an alpha lattice design with three replications during the summer seasons of 2013 and 2014 (heat stress environments, average temperature 35 °C and above), and post-rainy season of 2013 (non-stress environment, max. temperature below 30 °C). A two-fold variation for number of filled pods (FPod), total number of seeds (TS), harvest index (HI), percent pod setting (%PodSet) and grain yield (GY) was observed in the RILs under stress environments compared to non-stress environment. A yield penalty ranging from 22.26% (summer 2013) to 33.30% (summer 2014) was recorded in stress environments. Seed mass measured as 100-seed weight (HSW) was the least affected (6 and 7% reduction) trait, while %PodSet was the most affected (45.86 and 44.31% reduction) trait by high temperatures. Mixed model analysis of variance revealed a high genotypic coefficient of variation (GCV) (23.29–30.22%), phenotypic coefficient of variation (PCV) (25.69–32.44%) along with high heritability (80.89–86.89%) for FPod, TS, %PodSet and GY across the heat stress environments. Correlation studies (r = 0.61–0.97) and principal component analysis (PCA) revealed a strong positive association among the traits GY, FPod, VS and %PodSet under stress environments. Path analysis results showed that TS was the major direct and FPod was the major indirect contributors to GY under heat stress environments. Therefore, the traits that are good indicators of high grain yield under heat stress can be used in indirect selection for developing heat tolerant chickpea cultivars. Moreover, the presence of large genetic variation for heat tolerance in the population may provide an opportunity to use the RILs in future-heat tolerance breeding programme in chickpea.  相似文献   
129.
At present, testing for distinctness, uniformity and stability (DUS) of crop varieties relies on a set of morphological characters. These characters suffer fromthe limitations of number, interaction with the environment in which the variety grows and subjectivity in decision-making. The potential of DNA-based markers such as sequence tagged microsatellite site (STMS), for establishing DUS merits investigation. In the present study, a set of 55 mapped STMS markers, selected from 12 linkage groups of rice genome, was used to examine distinctness of 23 aromatic rice genotypes including the commercially important Basmati varieties. Forty-one of these markers (74.5%) showed polymorphism between the varieties. The number of alleles per locus ranged from 2–4 with an average of 2.3. The polymorphism information content (PIC) of the markers varied from 0.083 to 0.665 with an average of 0.338. All the varieties could be differentiated from each other at a low probability (0.07×10-13) of identical match by chance. The marker-based clustering of the varieties corresponded with the known phenotypic classification, thereby providing confidence in the distinctness established by the mapped STMS markers. The utility of these markers to study uniformity and stability was analysed using a commercially important crossbred Basmati rice variety Pusa Basmati 1(IET-10364) that contributes about 40–50% of Basmati rice export from India. Genotyping of twenty individual plants, grown from the nucleus, breeder, foundation, certified and farmer's saved seed samples using all the 55 markers revealed no variation among the plants. These observations suggested that the set of mapped markers employed in this study could be further used for establishing distinctness of aromatic rice varieties and for studying DUS of the important commercial variety Pusa Basmati 1. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
130.
Sustainable soil and crop management practices that reduce soil erosion and nitrogen (N) leaching, conserve soil organic matter, and optimize cotton and sorghum yields still remain a challenge. We examined the influence of three tillage practices (no-till, strip till and chisel till), four cover crops {legume [hairy vetch (Vicia villosa Roth)], nonlegume [rye (Secaele cereale L.)], vetch/rye biculture and winter weeds or no cover crop}, and three N fertilization rates (0, 60–65 and 120–130 kg N ha−1) on soil inorganic N content at the 0–30 cm depth and yields and N uptake of cotton (Gossypium hirsutum L.) and sorghum [Sorghum bicolor (L.) Moench]. A field experiment was conducted on Dothan sandy loam (fine-loamy, siliceous, thermic, Plinthic Paleudults) from 1999 to 2002 in Georgia, USA. Nitrogen supplied by cover crops was greater with vetch and vetch/rye biculture than with rye and weeds. Soil inorganic N at the 0–10 and 10–30 cm depths increased with increasing N rate and were greater with vetch than with rye and weeds in April 2000 and 2002. Inorganic N at 0–10 cm was also greater with vetch than with rye in no-till, greater with vetch/rye than with rye and weeds in strip till, and greater with vetch than with rye and weeds in chisel till. In 2000, cotton lint yield and N uptake were greater in no-till with rye or 60 kg N ha−1 than in other treatments, but biomass (stems + leaves) yield and N uptake were greater with vetch and vetch/rye than with rye or weeds, and greater with 60 and 120 than with 0 kg N ha−1. In 2001, sorghum grain yield, biomass yield, and N uptake were greater in strip till and chisel till than in no-till, and greater in vetch and vetch/rye with or without N than in rye and weeds with 0 or 65 kg N ha−1. In 2002, cotton lint yield and N uptake were greater in chisel till, rye and weeds with 0 or 60 kg N ha−1 than in other treatments, but biomass N uptake was greater in vetch/rye with 60 kg N ha−1 than in rye and weeds with 0 or 60 kg N ha−1. Increased N supplied by hairy vetch or 120–130 kg N ha−1 increased soil N availability, sorghum grain yield, cotton and sorghum biomass yields, and N uptake but decreased cotton lint yield and lint N uptake compared with rye, weeds or 0 kg N ha−1. Cotton and sorghum yields and N uptake can be optimized and potentials for soil erosion and N leaching can be reduced by using conservation tillage, such as no-till or strip till, with vetch/rye biculture cover crop and 60–65 kg N ha−1. The results can be applied in regions where cover crops can be grown in the winter to reduce soil erosion and N leaching and where tillage intensity and N fertilization rates can be minimized to reduce the costs of energy requirement for tillage and N fertilization while optimizing crop production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号