首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   507篇
  免费   19篇
林业   53篇
农学   76篇
基础科学   8篇
  106篇
综合类   36篇
农作物   24篇
水产渔业   39篇
畜牧兽医   121篇
园艺   26篇
植物保护   37篇
  2023年   3篇
  2022年   12篇
  2021年   16篇
  2020年   18篇
  2019年   8篇
  2018年   26篇
  2017年   23篇
  2016年   15篇
  2015年   20篇
  2014年   22篇
  2013年   47篇
  2012年   27篇
  2011年   29篇
  2010年   23篇
  2009年   22篇
  2008年   26篇
  2007年   15篇
  2006年   11篇
  2005年   7篇
  2004年   12篇
  2003年   7篇
  2002年   4篇
  2001年   8篇
  2000年   5篇
  1999年   3篇
  1998年   4篇
  1995年   4篇
  1993年   3篇
  1992年   3篇
  1990年   7篇
  1989年   3篇
  1988年   5篇
  1987年   4篇
  1986年   4篇
  1985年   5篇
  1984年   2篇
  1983年   6篇
  1981年   3篇
  1980年   3篇
  1979年   11篇
  1978年   3篇
  1977年   3篇
  1976年   2篇
  1973年   3篇
  1972年   4篇
  1970年   3篇
  1969年   5篇
  1968年   5篇
  1967年   8篇
  1966年   6篇
排序方式: 共有526条查询结果,搜索用时 15 毫秒
61.
High temperature is a major environmental factor that limits wheat (Triticum aestivum L.) productivity. Climate models predict greater increases in night‐time temperature than in daytime temperature. The objective of this research was to compare the effects of high daytime and high night‐time temperatures during anthesis on physiological (chlorophyll fluorescence, chlorophyll concentration, leaf level photosynthesis, and membrane damage), biochemical (reactive oxygen species (ROS) concentration and antioxidant capacity in leaves), growth and yield traits of wheat genotypes. Winter wheat genotypes (Ventnor and Karl 92) were grown at optimum temperatures (25/15 °C, maximum/minimum) until the onset of anthesis. Thereafter, plants were exposed to high night‐time (HN, 25/24 °C), high daytime (HD, 35/15 °C), high daytime and night‐time (HDN, 35/24 °C) or optimum temperatures for 7 days. Compared with optimum temperature, HN, HD and HDN increased ROS concentration and membrane damage and decreased antioxidant capacity, photochemical efficiency, leaf level photosynthesis, seed set, grain number and grain yield per spike. Impact of HN and HD was similar on all traits. Greater impact on seed set, grain number and grain yield per spike was observed at HDN compared with HN and HD. These results suggest that HN and HD during anthesis cause damage of a similar magnitude to winter wheat.  相似文献   
62.
Wheat is an important cereal food crop providing key nutrients to humankind. Rusts are the most destructive pathogens of cereal crops, with the exception of rice, across the world and resistant cultivars have been widely employed to reduce the yield losses caused by them. The modern intensive monoculture of cultivars and changing climatic conditions has created congenial conditions for the emergence of new virulent races such as Ug99, which is a great concern for world food security. Conventional breeding efforts have not been effective in quickly developing new varieties with durable and broad‐spectrum resistance against the rapidly evolving rust pathogen races. However, in the last two decades, biotechnological methods such as marker‐assisted selection (MAS) and transgenic technology have provided novel strategies for enhancing resistance levels and durability in crop plants in a short span of time. Nevertheless, broad application of transgenics in agriculture is hindered by biosafety apprehensions. In recent years, improved versions of biotechnological breeding methods such as genomic selection, genome editing technologies, cisgenesis and intragenesis, RNA‐dependent DNA methylation (RdDM), agroinfiltration and reverse breeding are gaining popularity. These technologies provide a tremendous capability to manipulate crop plants more precisely than before and accelerate crop improvement efforts for sustained food production as well as overcoming safety concerns associated with food crops.  相似文献   
63.
Increasing soil carbon (C) in arable soils is an important strategy to achieve sustainable yields and mitigate climate change. We investigated changes in soil organic and inorganic carbon (SOC and SIC) under conservation agriculture (CA) in a calcareous soil of the eastern Indo-Gangetic Plains of India. The treatments were as follows: conventional-till rice and wheat (CT-CT), CT rice and zero-till wheat (CT-ZT), ZT direct seeded rice (DSR) and CT wheat (ZT-CT), ZTDSR and ZT wheat without crop residue retention (ZT-ZT), ZT-ZT with residue (ZT-ZT+R), and DSR and wheat both on permanent beds with residue (PB-PB+R). The ZT-ZT+R had the highest total SOC in both 0–15 and 15–30 cm soil layers (20% and 40% higher (p < .05) than CT-CT, respectively), whereas total SIC decreased by 11% and 15% in the respective layers under ZT-ZT+R compared with CT-CT. Non-labile SOC was the largest pool, followed by very labile, labile and less labile SOC. The benefits of ZT and residue retention were greatest for very labile SOC, which showed a significant (p < .05) increase (~50%) under ZT-ZT+R compared with CT-CT. The ZT-ZT+R sequestered ~2 Mg ha−1 total SOC in the 0–15 cm soil layer in 6 years, where CT registered significant losses. Thus, the adoption of CA should be recommended in calcareous soils, for C sequestration, and also as a reclamation technique.  相似文献   
64.
Finger millet [Eleusine coracana (L.) Gaertn.] is an important coarse cereal crop grown in the arid and semi‐arid regions and often experiences high temperature (HT) stress. The objectives of this research were (i) to quantify effects of season‐long HT stress on physiological and yield traits, (ii) to identify the developmental stages most sensitive to HT stress and (iii) to quantify the genetic variability for HT stress tolerance in finger millet. Research was conducted in controlled environment conditions. HT stress decreased the chlorophyll index, photosystem II activity, grain yield and harvest index. Maximum decrease in number of seeds per panicle and grain yield per plant was observed when stress was imposed during booting, panicle emergence or flowering stages. Maximum genotypic variation was explained by panicle width and number of seeds per panicle at optimum temperature (OT) and grain yield per plant at HT and number of seeds at HT. Based on the stress response and grain yield, tolerant or susceptible genotypes were identified. Finger millet is sensitive to HT stress during reproductive stages, and there was genotypic variability among the finger millet genotypes for number of seeds per panicle and grain yield under HT, which can be exploited to enhance stress tolerance.  相似文献   
65.
There is little available information on the effects of temperature and CO2 enrichment on stomata anatomical characteristics of plants. Effect of these two microclimates was studied on five rose (Rosa spp.) cultivars, viz. ‘First Red’ (used as check), ‘Arjun’, ‘Raktima’, ‘Raktagandha’ and ‘Pusa Pitamber’. Budded, single-stemmed rose cultivars having five lateral buds were grown in controlled environment growth cabinets under enriched CO2 (1000 μmol mol−1) and optimum (28/18 °C, T0) or high (35/25 °C, T1) temperature for 50 days. All observations were made on the abaxial leaf surface. Significant increases in stomatal density (68.7%), index (29.6%) and epidermal cell density (37.3%) were recorded in plants grown at high temperature over control with CO2 enrichment. The cultivars responded differently in terms of length and width of guard cell and stoma (pore) under high temperature, however, the values averaged over treatments showed a significant reduction in these parameters. Further, number of stomata per leaf was higher (28.3%) in plants grown at high temperature, except First Red. A reduction in mean leaf area (26.7%) and dry mass (32.0%) was recorded at high rather than optimum temperature. The specific leaf area was maximum in Arjun (87%) while in First Red, a 14% reduction was noted at high temperature.  相似文献   
66.
Cage‐pond integration system is a new model for enhancing productivity of pond aquaculture system. A field trial was conducted using African catfish (Clarias gariepinus) and Nile tilapia (Oreochromis niloticus) in cages and carps in earthen ponds. There were four treatments replicated five times: (1) carps in ponds without cage, (2) tilapia at 30 fish m?3 in cage and carps in open pond, (3) catfish at 100 fish m?3 in cage and carps in open pond, (4) tilapia and catfish at 30 and 100 fish m?3, respectively, in separate cages and carps in open pond. The carps were stocked at 1 fish m?2. The cage occupied about 3% of the pond area. The caged tilapia and catfish were fed and the control ponds were fertilized. Results showed that the combined extrapolated net yield was significantly higher (P < 0.05) in the catfish, tilapia and carps integration system (9.4 ± 1.6 t ha?1 year?1) than in the carp polyculture (3.3 ± 0.7 t ha?1 year?1). The net return from the tilapia and carps (6860 US$ ha?1 year?1) and catfish, tilapia and carps integration systems (6668 US$ ha?1 year?1) was significantly higher than in the carp polyculture (1709 US$ ha?1 year?1) (P < 0.05). This experiment demonstrated that the cage‐pond integration of African catfish and Nile tilapia with carps is the best technology to increase production; whereas integration of tilapia and carp for profitability.  相似文献   
67.
Abstract

Iron (Fe) chlorosis is a major nutritional constraint to groundnut (Arachis hypogaea L.) productivity in many parts of the world. On‐farm research was conducted at a Fe‐chlorotic site to evaluate the performance of three genotypes (TMV‐2, ICGS‐11, and ICGV‐86031), three fertilizer practices [no fertilizer control, fanners practice (125: 200: 0 kg NPK ha?1), recommended practice (20: 50: 30 kg NPK ha?1)], and two Fe treatments (non‐sprayed control and foliar FeSO4 sprays) for their effect on Fe‐chlorosis and haulm and pod yields. These treatments were tested in a strip‐split plot design with four replicates. Results revealed that TMV‐2 and ICGS‐11 were susceptible to Fe‐chlorosis and produced significantly smaller haulm and pod yield, whereas, ICGV‐8603 1 was tolerant to Fe‐chlorosis. Farmer's fertilizer practice had the highest incidence of Fe‐chlorosis. Extractable Fe and chlorophyll content in the fresh leaves were the best indices of Fe‐status and were significantly (P<0.01) correlated with visual chlorosis ratings. Foliar application of FeSO4 (0.5 w/ v) was effective in correcting Fe‐chlorosis and increased pod yield by about 30 to 40% in susceptible genotypes. These results suggests that use of tolerant genotypes such as ICGV‐86031 or foliar application of FeSO4 in susceptible genotypes such as TMV‐2 and ICGS‐11 in combination with recommended fertilizer levels is an effective management package for alleviating Fe‐chlorosis in groundnut.  相似文献   
68.
A field study conducted for two years (2006 and 2007) at the Research Farm of the Indian Agricultural Research Institute, New Delhi, India showed that zinc (Zn) fertilization increased yield attributes, grain and straw yield, enhanced Zn concentrations and its uptake and improved kernel quality before and after cooking in basmati rice ‘Pusa Sugandh 5’. A 2% Zn-coating with zinc sulfate (ZnSO4·7H2O) was found to be the best but a 2% Zn-coating with zinc oxide (ZnO) was very close to it in terms of grain and straw yield and Zn concentrations in basmati rice grain and straw under Zn stress conditions. Partial factor productivity (PFP) of applied Zn varied from 984–3,387 kg grain kg Zn?1, agronomic efficiency (AE) varied from 212–311 kg grain kg?1 Zn (applied) and physiological efficiency (PE) of Zn varied from 6,384–17,077 kg grain kg?1 Zn (absorbed). Thus, adequate Zn fertilization of basmati rice can lead to higher grain yield and Zn-denser grains with improved cooking quality in basmati rices under Zn stress soil conditions.  相似文献   
69.
A laboratory study was conducted at the Indian Agricultural Research Institute, New Delhi on a sandy clay loam soil of pH 7.9 and organic C content of 0.34% to study the effect of incorporating Sesbania or Vigna legume residues or wheat straw at 15 and 30t ha?1 on temporal variation in ammoniacal and nitrate‐N in soil under submergence and well drained conditions. Under submergence most mineral N was present as ammoniacal‐N, while under well drained conditions it was present as Nitrate‐N. The content of ammoniacal N in soil was the highest after 30 days of incubation and declined thereafter under submergence. On the other hand under well drained conditions the mineral‐N (mostly nitrate) content in soil at 30 DAI was very little and showed increases only later, reaching the highest level at 90 DAI. Application of wheat straw specially at 301 ha?1 level resulted in immobilization of native soil‐N. These results show that rice which is grown under submergence can be transplanted soon after incorporation of legume residues, but for wheat or other crops which are grown under well drained condition a time interval of 30 days or more needs to be provided before sowing the crop.  相似文献   
70.
Field experiments were made on a sandy clay loam soil at the Indian Agricultural Research Institute, New Delhi to study the effect of levels and sources of nitrogen on concentration and uptake of nitrogen by a high yielding variety Pusa 834 and a hybrid PRH3 of rice. Nitrogen concentration in hybrid PRH 3 remained lower than in Pusa 834, but N uptake was significantly more in the hybrid PRH 3. Nitrogen fertilization increased N concentration as well as N uptake by rice. At 30 days after transplanting (DAT) N uptake was more in Pusa 834, but at 60 DAT and at harvest hybrid PRH 3 recorded significantly more N uptake than Pusa 834. Use of neem oil blended urea (PNGU) and neem coated urea (NCU) increased N concentration and uptake by rice in both Pusa 834 and hybrid PRH 3. Use of neem coated/blended urea is recommended for rice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号