首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30953篇
  免费   727篇
  国内免费   1647篇
林业   5239篇
农学   3806篇
基础科学   1386篇
  4944篇
综合类   5099篇
农作物   3018篇
水产渔业   2234篇
畜牧兽医   3118篇
园艺   1662篇
植物保护   2821篇
  2024年   38篇
  2023年   142篇
  2022年   411篇
  2021年   570篇
  2020年   556篇
  2019年   543篇
  2018年   3087篇
  2017年   3162篇
  2016年   1683篇
  2015年   740篇
  2014年   627篇
  2013年   745篇
  2012年   1653篇
  2011年   3071篇
  2010年   2989篇
  2009年   2075篇
  2008年   2079篇
  2007年   2400篇
  2006年   792篇
  2005年   822篇
  2004年   453篇
  2003年   582篇
  2002年   552篇
  2001年   471篇
  2000年   433篇
  1999年   423篇
  1998年   334篇
  1997年   284篇
  1996年   225篇
  1995年   231篇
  1994年   222篇
  1993年   197篇
  1992年   181篇
  1991年   121篇
  1990年   101篇
  1989年   116篇
  1988年   92篇
  1987年   42篇
  1986年   21篇
  1985年   15篇
  1984年   10篇
  1983年   4篇
  1982年   5篇
  1981年   3篇
  1980年   6篇
  1979年   2篇
  1977年   4篇
  1968年   4篇
  1965年   2篇
  1956年   1篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
991.

Background

One of the core issues of forest community ecology is the exploration of how ecological processes affect community structure. The relative importance of different processes is still under debate. This study addresses four questions: (1) how is the taxonomic structure of a forest community affected by spatial scale? (2) does the taxonomic structure reveal effects of local processes such as environmental filtering, dispersal limitation or interspecific competition at a local scale? (3) does the effect of local processes on the taxonomic structure vary with the spatial scale? (4) does the analysis based on taxonomic structures provide similar insights when compared with the use of phylogenetic information? Based on the data collected in two large forest observational field studies, the taxonomic structures of the plant communities were analyzed at different sampling scales using taxonomic ratios (number of genera/number of species, number of families/number of species), and the relationship between the number of higher taxa and the number of species. Two random null models were used and the “standardized effect size” (SES) of taxonomic ratios was calculated, to assess possible differences between the observed and simulated taxonomic structures, which may be caused by specific ecological processes. We further applied a phylogeny-based method to compare results with those of the taxonomic approach.

Results

As expected, the taxonomic ratios decline with increasing grain size. The quantitative relationship between genera/families and species, described by a linearized power function, showed a good fit. With the exception of the family-species relationship in the Jiaohe study area, the exponents of the genus/family-species relationships did not show any scale dependent effects. The taxonomic ratios of the observed communities had significantly lower values than those of the simulated random community under the test of two null models at almost all scales. Null Model 2 which considered the spatial dispersion of species generated a taxonomic structure which proved to be more consistent with that in the observed community. As sampling sizes increased from 20 m × 20 m to 50 m × 50 m, the magnitudes of SESs of taxonomic ratios increased. Based on the phylogenetic analysis, we found that the Jiaohe plot was phylogenetically clustered at almost all scales. We detected significant phylogenetically overdispersion at the 20 m × 20 m and 30 m × 30 m scales in the Liangshui plot.

Conclusions

The results suggest that the effect of abiotic filtering is greater than the effects of interspecific competition in shaping the local community at almost all scales. Local processes influence the taxonomic structures, but their combined effects vary with the spatial scale. The taxonomic approach provides similar insights as the phylogenetic approach, especially when we applied a more conservative null model. Analysing taxonomic structure may be a useful tool for communities where well-resolved phylogenetic data are not available.
  相似文献   
992.
For the fifth year, BMC Ecology is proud to present the winning images from our annual image competition. The 2017 edition received entries by talented shutterbug-ecologists from across the world, showcasing research that is increasing our understanding of ecosystems worldwide and the beauty and diversity of life on our planet. In this editorial we showcase the winning images, as chosen by our Editorial Board and guest judge Chris Darimont, as well as our selection of highly commended images. Enjoy!  相似文献   
993.
Weeds caused serious problem on yield reduction of basmati rice worldwide. Losses caused by weeds varied from one country to another, depending on the presence of dominant weeds and the control methods practiced by farmers; therefore, suitable plant population and weed management practices should be adopted. Keeping these in mind, a field experiment was carried out during kharif seasons of 2009 and 2010 at crop Research Centre of SVPUA&T, Meerut, India comprising 4 planting geometries, viz. 20, 30, 40, and 50 hills m?2 as main plot factor, and 5 weed management practices (Butachlor @ 1.0 kg ha?1, Butachlor @ 1.0 kg ha?1 fb (followed by) one hand weeding, Butachlor @ 1.0 kg ha?1 fb Almix @ 4 g ha?1, two hand weedings and weedy check) in a split plot design with 3 replications. Experimental results revealed that plant population of 50 hills m?2 proved superior over that of 20 hills m?2 in respect of weed density, weed dry weight, number of tillers m?2, yield attributes, grain, straw, and biological yields. The maximum grain yield (29.00 and 31.00 q ha?1) and straw yield (51.30 and 52.50 q ha?1) were recorded in 50 hills m?2 followed by 40 hills m?2 during 2009 and 2010, respectively. In respect of nitrogen, phosphorus, and potassium removal, a reverse trend was observed: the highest in 20 hills m?2 followed by 30, 40, and 50 hills m?2. As far as the weed management practices are concerned, both chemical and mechanical methods of weed control were found superior over weedy check. The lowest weed density, dry weight, and highest weed control efficiency, maximum length of panicle?1, number of panicle (m2), and 1000-grain weight and grain yield of 30.40 and 32.60 q ha?1 were recorded with two hand weedings which was at par with Butachlor @ 1.0 kg ha?1 fb one hand weeding over rest of the weed management practices.  相似文献   
994.
A method for allocating allowable ranges of total nitrogen (TN) load to nonpoint (diffuse pollution) sources in a watershed has been developed by adopting the two-phase grey fuzzy optimization approach. Competing goals of water quality management authorities and TN load dischargers at nonpoint sources such as paddy field, upland crop field, and residential area are described with linear imprecise membership functions including interval numbers. TN load discharged from each cell of the nonpoint sources is assumed to be transported along with surface, subsurface, and river flow under the conventional first-order kinetic removal with respect to distance. The travel length of the load is estimated with a digital elevation model in a geographic information system (GIS). Uncertainty of river discharge and self-purification coefficients appearing in the TN transport model is also expressed with interval numbers. The GIS-aided grey fuzzy optimization model developed here is applied to the Seimei River watershed, Japan. By solving the optimization model, the allowable load represented by an interval number at each cell is procured, which would be a scientific base for effluent control regarding nonpoint sources in the area.  相似文献   
995.
Paddy land plays a key role in global crop production. Thus, paddy land water is a potential source of nitrogen and phosphorus; both nutrients largely contribute to non-point source pollution because they usually vary closely with micrometeorological elements (MEs) during the growth period. However, few studies have focused on the mechanism of co-variation between nutrients and MEs at the field scale. The relationships between nutrients in the paddy land water and MEs as well as soil water content, soil temperature, and the normalized difference vegetation index (NDVI) are still unclear. In this paper, an in situ experiment was designed to obtain 5 years of meteorological data and nutrient data (nitrogen and phosphorus); the size of the experiment plot is in accordance with the spatial resolution of NDVI data. Multi-source meteorological and satellite data were integrated to explore the mechanism of co-variation. The results show that precipitation, air temperature, and solar radiation are the three MEs significantly affecting the nitrogen concentration in the paddy land water during the growth period. The air temperature is the most important ME influencing the phosphorus concentration. At the same time, the NDVI, as an effective indicator of the photosynthetic potential of rice used to explore the relationship between nutrients, has a prominent influence on soluble nutrients, especially on dissolved phosphorus. These findings could significantly improve our understanding about the responses of paddy land nutrients during the growth period to the surrounding drivers, inclusive of MEs, soil water, soil temperature, and NDVI. Undoubtedly, it is a potentially helpful means to monitor the sources of non-point pollution.  相似文献   
996.
Sodium adsorption ratio (SAR) is one of the water quality indexes that whose is important due to reuse or depletion to environment. Solutes in drain water can be controlled by adsorption, chemical or biological reaction, organic envelope of drainage. Rice husk is the common option of drainage envelops in paddy fields. In this study, the ability of reduction of SAR by rice husk was evaluated in batch scale and physical model of drain envelops. In the batch experiments, the adsorption of SAR parameters was investigated by adding 2 g of rice husk into a 100 ml of sodium chloride solution. The results indicated that rice husk absorbed calcium, magnesium and sodium, respectively. By increasing the temperature, contact time and pH, adsorption of calcium, magnesium and sodium was increased; however, the higher concentration of sodium in soil solution reduced the percentage of adsorption. In a more realistic state, physical models of subsurface drainage in the paddy fields were made. Drainage envelope treatments included of rice husk (H), combination of 20 and 60 % of husk with gravel (H20G80 and H60G40) and a pipe without envelope (NE). Due to higher drain discharge and more sodium removal (lower SAR in drain water), treatment H with the discharge of 16.2 ml/min and SAR of 1.27 (meq/l)0.5 was better in comparison with other treatments.  相似文献   
997.
998.
Paddy fields are subjected to fluctuating water regimes as a result of the alternate drying and wetting water management, which often incurs a sensitive change in N2O emissions from paddy soils. However, how the soil moisture regulates the emission of N2O from paddy soil remains uncertain. In this study, three incubation experiments were designed to study the effects of constant and fluctuating soil moisture on N2O emission and the sources of N2O emission from paddy soil. Results showed that the N2O emission from paddy soil at 100 % WHC (water-holding capacity) was higher than that at 40, 65, 80, 120, and 160 % WHC, indicating that 100 % WHC was the optimum soil moisture content for N2O emission under the incubation experiment. Small peak of N2O flux appeared when the soil moisture content from 250 % WHC decreased near to 100 % WHC, lower than that triggered by nitrogen (N) fertilization, which was mainly owing to the low NH4 + concentration at this period. Nitrification dominated the emissions of N2O from paddy soil at 250 % WHC (54.96 %), higher than that of nitrification-coupled denitrification (6.74 %) and denitrification (38.3 %). The contribution of denitrification to N2O emissions (44.10 %) was equivalent to that of nitrification (44.45 %) in soil at 100 % WHC, which was higher than that of 250 % WHC treatment. In conclusion, the finding suggested that the peak of N2O in paddy soils during midseason aeration could be attributed to the occurrence of optimum soil moisture under sufficient N availability, favorable for the production and accumulation of N2O.  相似文献   
999.
Based on data collected from rice fields under drying–wetting cycle condition, the procedure of dual-crop coefficient (K cd) approaches was calibrated and validated to reveal its feasibility and improve its performance in rice evapotranspiration (ET c) estimation. It was found that K cd based on FAO-recommended basal crop coefficients (K cb) underestimated dual-crop coefficients in monsoon climate region in East China. The recommended coefficient (K cp) value of 1.2 was not high enough to reflect the pulse increase of rice ET c after soil wetting. The K cb values were calibrated as 1.52 and 0.63 in midseason and late season, and the K cp value was adjusted as 1.29 after soil wetting in rice field under drying–wetting cycle condition. The dual-crop coefficient curves based on locally calibrated K cbCal and K cpCor matched well with the measured crop coefficients and performed well in calculating rice evapotranspiration from paddy fields under drying–wetting cycle condition. So it can be concluded that the procedure of dual-crop coefficient method is feasible in rice ET c estimation, and locally calibrated K cb and K cp can improve its performance remarkably.  相似文献   
1000.
Rhizosphere microbes play a cardinal role in transformation and crop uptake of arsenic (As), thereby relieving or intensifying the risk of As contamination in the food webs. How rhizosphere microbiomes respond to As contamination in different paddy soils and rice growth stages is still unclear. Here, we conducted a rice pot experiment to address the effects of rice developmental stage and As contamination on the rhizosphere microbial communities in two contrast paddy soils, a yellow clayey paddy soil (YP, pH 5.1, soil organic matter 20.8 g/kg) and red paddy soil (RP, pH 6.2, soil organic matter 46.1 g/kg). The rhizosphere microbial communities were investigated using phospholipid fatty acids analysis at tillering, panicle initiation, and maturity stages. The results showed that rice growing in YP soil accumulated 2-10 times higher contents of As in root than that in RP soil. There was a significant effect of rice growing stage, independent of soil types and As treatment, on rhizosphere microbial community composition in both YP and RP soils as depicted by canonical correspondence analysis. As contamination significantly altered rhizosphere microbial community composition only in YP soil, which showed the soil type dependency of the As contamination effect. In RP soil, the higher content of soil organic matter reduced the impact of As contamination. Soil pH explained more percentage of variation in microbial community composition than soil DOC and DON did. These influences of soil physiochemical properties on heavy metal available and rhizosphere microbial community may lay the foundation for exploration of bioremediation potential.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号