首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78819篇
  免费   3368篇
  国内免费   38篇
林业   6941篇
农学   3644篇
基础科学   517篇
  11730篇
综合类   8312篇
农作物   4432篇
水产渔业   5074篇
畜牧兽医   34357篇
园艺   1808篇
植物保护   5410篇
  2019年   502篇
  2018年   3948篇
  2017年   4055篇
  2016年   2287篇
  2015年   957篇
  2014年   1046篇
  2013年   2380篇
  2012年   2729篇
  2011年   4691篇
  2010年   3933篇
  2009年   3106篇
  2008年   3725篇
  2007年   4164篇
  2006年   1999篇
  2005年   1944篇
  2004年   1819篇
  2003年   1866篇
  2002年   1641篇
  2001年   2353篇
  2000年   2250篇
  1999年   1742篇
  1998年   690篇
  1997年   630篇
  1996年   607篇
  1995年   677篇
  1994年   580篇
  1993年   589篇
  1992年   1304篇
  1991年   1408篇
  1990年   1457篇
  1989年   1354篇
  1988年   1267篇
  1987年   1241篇
  1986年   1176篇
  1985年   1109篇
  1984年   922篇
  1983年   733篇
  1982年   528篇
  1979年   797篇
  1978年   621篇
  1977年   491篇
  1976年   530篇
  1975年   508篇
  1974年   627篇
  1973年   609篇
  1972年   638篇
  1971年   606篇
  1970年   593篇
  1969年   546篇
  1967年   505篇
排序方式: 共有10000条查询结果,搜索用时 281 毫秒
991.
Economic growth in China’s agricultural sector lags behind growth in industry and services, creating an ever widening rural–urban income gap. Development of the non-agricultural sectors offers new opportunities for farmers in China’s more advanced provinces such as Zhejiang. Increased income in the urban sector creates markets for new products, and migrating farmers rent their land to those staying. Until now, the prevailing rice-based systems have been managed mainly using manual labour and animal traction, but the larger farms resulting from migration may facilitate, or even require mechanization. In this study, we use a simulation model of the farm household to analyse the effects of increasing farm size and the transition from rice to vegetable production, while also studying the effects of mechanization.  相似文献   
992.
The need for a better understanding of the interaction between irrigation practices and the elevation and quality of the water table is of paramount importance for developing irrigation management strategies to ameliorate the regional problems of elevated saline water tables in the San Joaquin Valley, California. An area of approximately 3000 ha which includes portions of the Diener Ranch and the adjacent University of California, Westside Research and Extension Center, located south of Five Points in the Westlands Water District on the west side of the San Joaquin Valley was chosen for extensive field measurements. Field work consisted of four main activities namely, field instrumentation, collection of records of field activities, periodic data collection, and analyses of field data. Field measurements of water table carried out during 1994 indicated that the water table elevation was sensitive to the irrigation practices. There was a general increase in the area with a water table close to the surface during the irrigation season, and a return to water table elevations similar to the starting conditions at the end of the season. During the study period, the surface water quality deteriorated more in areas irrigated with reuse water and persisted through the end of the season. Depth averaged electrical conductivity for the study area over 6.5 m decreased between December 1993 and December 1994. Vertical hydraulic gradients in the saturated zone, were found to be an order of magnitude larger than horizontal gradients. The direction of vertical gradients changed, with downward gradients following pre-irrigations and upward gradients later in the season, when crop water requirements increased. Based on the results of the field study, it can be concluded that the irrigation management practices have a direct effect on local water table response as well as on water quality. Therefore, irrigation practices that promote less deep percolation losses may be helpful in controlling the water table rise.  相似文献   
993.
A modern computer-based simulation tool (WaterMan) in the form of a game for on-farm water management was developed for application in training events for farmers, students, and irrigators. The WaterMan game utilizes an interactive framework, thereby allowing the user to develop scenarios and test alternatives in a convenient, risk-free environment. It includes a comprehensive soil water and salt balance calculation algorithm. It also employs heuristic capabilities for modeling all of the important aspects of on-farm water management, and to provide quantitative performance evaluations and practical water management advice to the trainees. Random events (both favorable and unfavorable) and different strategic decisions are included in the game for more realism and to provide an appropriate level of challenge according to player performance. Thus, the ability to anticipate the player skill level, and to reply with random events appropriate to the anticipated level, is provided by the heuristic capabilities used in the software. These heuristic features were developed based on a combination of two artificial intelligence approaches: (1) a pattern recognition approach and (2) reinforcement learning based on a Markov decision processes approach, specifically the Q-learning method. These two approaches were combined in a new way to account for the difference in the effect of actions taken by the player and action taken by the system in the game world. The reward function for the Q-learning method was modified to reflect the suggested classification of the WaterMan game as what is referred to as a partially competitive and partially cooperative game.  相似文献   
994.
995.
Summary Standard local practice in Northern India is to continue irrigation of winter wheat crop almost up to harvest, based on the farmer's belief that this treatment increases grain weight and yield. The effect of an early cut-off of irrigation on the water use was studied in a three-year experiment on a deep, sandy-loam soil.Wheat, sown during the second or third week of November, received its first irrigation four weeks later. Subsequently treatments included irrigations of 7.5 cm water depth applied after 10 cm of cumulative pan evaporation minus rainfall had elapsed since the previous irrigation up till mid-April; irrigations of 7.5 cm up till mid-February and thereafter irrigation equal to 75 and 100% soil-water deficit in the 0–180 cm profile around March 10 with no later irrigation; and a similar treatment with one additional irrigation after making up the water deficit.Least irrigation water was used from the treatment in which 75% water deficit was restored around March 10 and no further irrigation was applied. This treatment increased the average extraction of profile water by 4 cm compared to treatments in which irrigation was continued until mid-April. Profile water depletion was inversely related to the amount of irrigation. Grain weight and yields from the various treatments harvested in the last week of April were unaffected by the treatments.The authors are grateful to the ICAR for financing this research  相似文献   
996.
Production and water use in lettuces under variable water supply   总被引:3,自引:0,他引:3  
The effects of a variable water supply on the water use, growth and yield of two crisphead and one romaine (i.e., Cos) lettuce cultivar were examined in a field experiment using a line source sprinkler system that produced a range of water regimes that occur in growers fields. Four locations at increasing distances from the main line were monitored through the season (i.e., from thinning to harvest, 28–63 days after planting (DAP)). These locations at the end of the season corresponded to: (1) rewatering to field capacity (FC); (2) watering with a volume 13% below that required in the field capacity treatment (0.87*FC); (3) 30% below FC (0.70*FC); and (4) 55% below FC (0.45*FC). A linear production function for dry matter accumulation and fresh weight vs. crop evapotranspiration (ETc) was determined for lettuce during this period, giving a water use efficiency for dry matter of 1.86 g m–2 mm–1 and for fresh weight of 48 g m–2 mm–1 . For lettuce irrigated to field capacity, ETc between thinning and harvest was 146 mm; maximum crop coefficients of 0.81–1.02 were obtained at maturity (55–63 DAP). For the three irrigation treatments receiving the largest water application, ETc was higher in the Cos culivar than in the two crisphead lettuce cultivars which had similar ETc. Plant fresh weight was more sensitive than dry weight to reduction in water supply. In the FC treatment, root length density and soil water extraction were greatest in the top 0–45 cm, and decreased rapidly below 45 cm depth. Soil water extraction by roots increased at lower depths when irrigation was reduced. Instantaneous rates of leaf photosynthesis and leaf water potential showed no response to the irrigation treatments in this study, despite differences in biomass production. Evaporation was determined to be the major component of ETc for 45 of the 63 days of the growing season. The large loss of water by evaporation during mid-season and the apparent insensitivity of lettuce to the volume of irrigation during this period may provide an opportunity for reducing irrigation applications.  相似文献   
997.
A field experiment was conducted with a bunched variety of peanut (Arachis hypogaea L.) cv. JL-24 during the summer seasons (March–June) of 1992 and 1993 in the humid tropical canal command area at the University Experimental Farm, Memari (23°1 N, 88°5 E and 21.34 m a.s.l) in West Bengal of eastern India. The soil at the site is of sandy loam (Typic Fluvaquent) texture and the area has a shallow water table. Weekly and seasonal field water balance components of actual evapotranspiration (ETa) including the capillary contribution into root zone were determined. Peanut yield and water productivity were determined for three ratios of irrigation water and cumulative pan evaporation (CPE) of 0.9, 0.7 and 0.5. Mean crop coefficients were determined for each 7-day period of growth and were related to leaf area index and growing degree-days. Average seasonal values of ETa of peanut were 434, 391 and 356 mm for the three treatments, respectively, for 115 days of growth. The total pod yield and WP were significantly higher in 0.9 IW:CPE treatment in the 1992 season. On an average, 0.9 IW:CPE treatment had 7 and 11% higher yields in 1992 and 1993, respectively, over treatments 0.7 and 0.5 IW:CPE. The maximum average Kc of 1.19 occurred about 9 weeks after sowing relative to grass reference ET (ETo).  相似文献   
998.
To facilitate weed suppression, oilseed rape or canola (Brassica napus) has been genetically modified (GM) over the last two decades to incorporate herbicide tolerance (HT). The introduction of oilseed rape in commercial agriculture raises concerns about potential adverse agronomic and environmental effects linked to both the genetic modification and altered agricultural practice. How will this new crop modify the existing cropping practice? What are the potential agro-environmental implications of its introduction? This paper analyses and schematises recorded and conceivable agricultural practice changes with GMHT oilseed rape introduction and its likely agro-environmental effects. It develops a conceptual systematics of influencing factors, subsequent practice changes and likely agro-environmental effects. The results can be used to design the mandatory monitoring of adverse GM crop effects.  相似文献   
999.
Reducing overall water diversions for agriculture, while maintaining or increasing production to keep up with increasing world population, has been and will continue to be a challenge. Yet there is not good agreement regarding the programs needed to improve the productivity of agricultural water use, nor what increases are feasible. It is recognized that field irrigation is inherently nonuniform. So also is the distribution of water to users and water delivery service nonuniform. Here, we suggest that crop-scale irrigation uniformity can be examined at a project scale by understanding how field, farm and project irrigation systems contribute to nonuniformity. We also discuss the interrelation between project scale uniformity and the relative irrigation water supply, and their combined impact on project productivity. We provide an example which relates internal measures of project performance (e.g., water distribution operations) and external measures of project performance (e.g., project-wise water productivity).  相似文献   
1000.
Operational limits to the Priestley-Taylor formula   总被引:4,自引:0,他引:4  
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号