首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   342篇
  免费   9篇
  国内免费   3篇
林业   27篇
农学   17篇
基础科学   3篇
  186篇
综合类   32篇
农作物   14篇
水产渔业   14篇
畜牧兽医   39篇
园艺   6篇
植物保护   16篇
  2023年   3篇
  2022年   4篇
  2021年   3篇
  2020年   13篇
  2019年   6篇
  2018年   7篇
  2017年   9篇
  2016年   15篇
  2015年   6篇
  2014年   8篇
  2013年   32篇
  2012年   4篇
  2011年   9篇
  2010年   9篇
  2009年   8篇
  2008年   26篇
  2007年   10篇
  2006年   6篇
  2005年   17篇
  2004年   5篇
  2003年   13篇
  2002年   9篇
  2001年   9篇
  2000年   12篇
  1999年   4篇
  1998年   2篇
  1997年   5篇
  1996年   5篇
  1995年   2篇
  1994年   3篇
  1993年   3篇
  1991年   8篇
  1990年   2篇
  1989年   15篇
  1988年   2篇
  1987年   5篇
  1986年   3篇
  1985年   4篇
  1984年   5篇
  1983年   3篇
  1982年   5篇
  1981年   4篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1977年   4篇
  1976年   6篇
  1971年   4篇
  1970年   3篇
  1966年   2篇
排序方式: 共有354条查询结果,搜索用时 15 毫秒
91.
Recognition of biochar as a potential tool for long-term carbon sequestration with additional agronomic benefits is growing. However, the functionality of biochar in soil and the response of soils to biochar inputs are poorly understood. It has been suggested, for example, that biochar additions to soils could prime for the loss of native organic carbon, undermining its sequestration potential. This work examines the priming potential of biochar in the context of its own labile fraction and procedures for their assessment. A systematic set of biochar samples produced from C4 plant biomass under a range of pyrolysis process conditions were incubated in a C3 soil at three discrete levels of organic matter status (a result of contrasting long-term land management on a single site). The biochar samples were characterised for labile carbon content ex-situ and then added to each soil. Priming potential was determined by a comparison of CO2 flux rates and its isotopic analysis for attribution of source. The results conclusively showed that while carbon mineralisation was often higher in biochar amended soil, this was due to rapid utilisation of a small labile component of biochar and that biochar did not prime for the loss of native organic soil organic matter. Furthermore, in some cases negative priming occurred, with lower carbon mineralisation in biochar amended soil, probably as a result of the stabilisation of labile soil carbon.  相似文献   
92.
To compare the effect of methods (foliar and soil) and rate of application of zinc sulphate on zinc and phosphorus uptake, tree size, yield and fruit quality of mango (Mangifera indica L.) cv. Dusheri, zinc sulphate was applied as a foliar spray application (0.25, 0.50, 1.0%) and soil (0.5, 1.0, 2.0 kg tree‐1) treatments during the second week of October (during flower bud differentiation period). All the zinc sulphate treatments of soil and foliar spray were effective in increasing the leaf zinc concentrations above recommended adequate level of (>20 mg kg‐1) whereas control trees maintained low leaf zinc concentrations (13.8 to 13.3 mg kg‐1). The uptake of foliar‐applied zinc was more rapid than that of soil applied zinc. All the treatments of zinc sulphate except the foliar spray treatment of zinc sulphate (0.25%) significantly increased zinc concentrations in the fruit pulp as compared with those in the control trees. The percent increase in the stem girth of trees was highest with the soil application of zinc sulphate (0.5 kg tree1) followed by foliar application of zinc sulphate (1.0%) as compared with all other treatments. The percent increase in the tree canopy volume was highest with the foliar application of zinc sulphate (1.0%) followed by soil application of zinc sulphate (1.0 kg tree1) as compared with control and all other treatments. There was no significant (P<0.05) increase in yield, fruit size and weight, pulp or stone weight with any treatment of zinc sulphate. Total soluble solid (TSS) in the fruit was significantly higher (18.6%) with the treatment of soil application of zinc sulphate (0.5 kg tree1) as compared with all other treatments of zinc sulphate and the control. Acid and sugar content of the fruit was not significantly affected by the foliar or soil application of zinc sulphate.  相似文献   
93.
Ilan Stavi  Rattan Lal   《CATENA》2011,84(3):148-155
Physical degradation of the soil increases its susceptibility to erosion by water action. However, relatively few studies have evaluated the opposite, i.e., the impact of water erosion on soil erodibility. This study was conducted in a corn field in Ohio. Some sites within the field have experienced water-induced soil erosion following heavy rainstorms. Physical characteristics of the soil were compared between eroded (ER) and un-eroded sites (UN). Compared with ER, the soil in UN had lower penetration resistance (4.87 vs. 4.53 MPa), bulk density (1.45 vs. 1.33 Mg m?3), and sand content (17.4 vs. 14.2%), and higher shear strength (80.1 vs. 125.3 KPa), hydraulic conductivity (3.0 vs. 3.4 cm h?1), intrinsic permeability (31.9 vs. 36.4 × 10?10 cm2), and contents of soil organic carbon (36.1 vs. 32.1 g kg?1), total nitrogen (3.3 vs. 3.1 g kg?1), clay (25.2 vs. 24.2%), silt (60.5 vs. 58.4%), and very fine sand (3.4 vs. 1.1%). Also Munsell's variables differed between ER and UN (1.24 vs. 0.54 for hue, 4.59 vs. 4.35 for value, and 1.99 vs. 1.79 for chroma, respectively). The erodibility factor (K) was lower in UN than in ER (0.00327 vs. 0.00354 Mg ha h ha?1 MJ?1 mm?1, respectively). Hence, it is suggested the ER sites within the corn field agroecosystem are more susceptible to accelerated erosion as compared with UN sites.  相似文献   
94.
Soil erosion is widespread in agricultural lands of the US Corn Belt. The objective of this study was to examine the impact of antecedent erosion on loss of soil under laboratory simulated rainfall. The soil was obtained from the surface layer of eroded (ER) and uneroded (UN) sites within a conservation agro‐ecosystem in central Ohio, USA. Air‐dried soil was subjected to a rainfall simulation for 60 min (dry run), and to another simulation (wet run) 24 h after the dry run. In the dry run, the cumulative water runoff, sediment yield, and soil organic carbon loss were higher in ER (12.3 L/m2, 169.3 g/m2, and 5.6 g/m2, respectively) than in the UN (7.3 L/m2, 22.6 g/m2, and 0.9 g/m2 respectively). An opposite trend was observed for the cumulative water infiltration (0.9 and 3.9 L/m2, respectively). In the wet run, despite a similar cumulative water runoff from the two erosional phases (20.1 and 19.6 L/m2 in ER and UN respectively), sediment yield and soil organic carbon loss were higher in ER (484.4 g/m2, and 16.3 g/m2 respectively) than in the UN (146.6 g/m2, and 5.3 g/m2 respectively). Also for the wet run, an opposite trend was observed for the cumulative infiltration (0.8 and 5.8 L/m2 respectively). This study suggests that past erosional processes increase the susceptibility of remaining soil to accelerated erosion.  相似文献   
95.
Nitrogen (N) losses from agriculture often contribute to reduced air, groundwater, and surface water quality. The minimization of these N losses is desirable from an environmental standpoint, and a recent interest in discounted reductions of agricultural N losses that might apply to a project downstream from an agricultural area has resulted in the concept of N credits and associated N trading. To help quantify management-induced reductions in N losses at the farm field level (essential components of a Nitrogen Trading Tool), we defined a Nitrogen Trading Tool difference in reactive N losses (NTT-DNLreac) as the comparison between a baseline and new management scenarios. We used a newly released Windows XP version of the Nitrogen Losses and Environmental Assessment Package (NLEAP) simulation model with Geographic Information System (GIS) capabilities (NLEAP-GIS) to assess no-till systems from a humid North Atlantic US site, manure management from a Midwestern US site, and irrigated cropland from an arid Western US site. The new NTT-DNLreac can be used to identify the best scenario that shows the greatest potential to maximize field-level savings in reactive N for environmental conservation and potential N credits to trade. A positive NTT-DNLreac means that the new N management practice increases the savings in reactive N with potential to trade these savings as N credits. A negative number means that there is no savings in reactive N and no N available to trade. The new NLEAP-GIS can be used to quickly identify the best scenario that shows the greatest potential to maximize field-level savings in reactive N for environmental conservation and earning N credits for trade.  相似文献   
96.
Long-term experimental sites are expected to provide important information regarding soil properties as affected by management practices. This study was designed to examine the effects of continuous fertilization, and manuring on the activities of enzymes involved in mineralization of C, N, and P on a long term (33 years) field trial under sub-temperate conditions in India. Treatments at the site included application of recommended doses of nitrogen and phosphorus (NP), nitrogen and potassium (NK), nitrogen, phosphorus and potassium (NPK), farmyard manure (FYM) with N (N + FYM), FYM with NPK (NPK + FYM) and un-amended control (C). The study was done under rainfed soybean–wheat rotation. Manure application increased soil carbohydrate, dehydrogenase, acid and alkaline phosphatases, cellulase, and protease activity significantly. Urease activity was not influenced by the manure treatment and the activity was highest in controls. Both acid and alkaline phosphatase activities were negatively influenced by chemical fertilizer treatment. Almost all the enzymes studied were significantly correlated with soil C content. The results suggest that application of FYM directly or indirectly influences the enzyme activity and it in turn regulates nutrient transformation.  相似文献   
97.
Following the decline of industrial manufacturing, many US cities have experienced severe population reductions that have resulted in large areas of vacant land. Urban agriculture has emerged as a desirable land use for these spaces, but degraded soils are common. Therefore, we measured soil and plant responses to amendments and management in urban lots where vacant houses had recently been demolished in Youngstown, OH, USA. Soil degradation was observed following demolition activities in the form of compaction (bulk density of 1·5–1·8 Mg m−3) and low soil microbial biomass C (21 mg C kg−1 soil). Our split‐plot experiment measured the effects of organic matter (OM) amendments produced from yard wastes and the use of raised beds on soil properties and vegetable crop yields. Two years after their application, OM amendments resulted in significant improvement to a number of soil physical, chemical, and biological properties. Vegetable crop yields were improved by OM amendments in 2011 and by both OM amendments and the use of raised beds in 2012. A soil quality index, developed using factor analysis and the Soil Management Assessment Framework, produced values ranging from 0·60 to 0·85, which are comparable to those reported for rural agricultural soils. All results indicate that urban agriculture can be productive in vacant urban land and that amendments produced from urban yard wastes can improve soil quality at previously degraded sites and increase crop yields for urban agriculture. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
98.
This study analyzes effects of soil and water conservation (SWC) on soil quality and implications to climate change adaptation and mitigation in the Upper Blue Nile River Basin of Ethiopia by using the Anjeni watershed as a case study site. Disturbed and undisturbed soil samples were collected from two sub‐watersheds of Anjeni: the Minchet sub‐watershed (with SWC measures) and the Zikrie sub‐watershed (without SWC measures). Soil samples were taken from 30‐cm depth from five representative landscape positions and analyzed following the standard soil lab analysis procedures. The results show that soils from the conserved sub‐watershed had improved quality indicators compared with those from the non‐conserved site. Significant improvement due to SWC measures was observed in the soil hydrological [total moisture content (+5·43%), field capacity (+5·35%), and available water capacity (+4·18%)] and chemical [cation exchange capacity (+4·40 cmol(+) kg−1), Mg2+ (+1·90 cmol(+) kg−1), Na+ (+0·10 cmol(+) kg−1)] properties. SWC interventions significantly reduced soil erosion by 57–81% and surface runoff by 19–50% in the conserved sub‐watershed. Reduction in soil erosion can maintain the soil organic carbon stock, reduce the land degradation risks, and enhance the C sequestration potential of soils. Therefore, adoption of SWC measures can increase farmers' ability to offset emissions and adapt to climate change. However, SWC measures that are both protective and sufficiently productive have not yet been implemented in the conserved sub‐watershed. Therefore, it is important that SWC structures be supplemented with other biological and agronomic measures in conjunction with soil fertility amendments appropriate to site‐specific conditions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
99.
Enhancement of soil organic carbon (SOC) stocks through mulching has been proposed, and although this practice can alter several soil properties, its impact on the temporal variability of carbon dioxide (CO2) emission from soils has not been widely investigated. To that end, we monitored CO2 fluxes from a central Ohio Luvisol (fine, mixed, mesic Aeric Ochraqualf) amended with wheat (Triticum aestivum L.) straw applied at rates of 0 (M0), 8 (M8) and 16 (M16) Mg dry matter ha−1 per year and supplemented with fertilizer (244 kg N ha−1 per year) or without. The experimental design was a randomized complete block design with three replications. The intensity of CO2 emission was higher in the late winter (mean: 2.79 g CO2-C m−2 per day) and summer seasons (2.45 g CO2-C m−2 per day) and lowest in the autumn (1.34 g CO2-C m−2 per day). While no significant effect of N fertilization on CO2 emission was detected, soil mulching had a significant effect on the seasonal variation of CO2 fluxes. The percentage of annual CO2 emitted during the winter and spring was similar across treatments (17–22%); however, 43% of the annual CO2 loss in the M0 plots occurred during the summer as opposed to 26% in the mulch treatments. A close relationship (F=0.47X+4.45, R2=0.97, P<0.001) was found between annual CO2 flux (F, Mg CO2-C ha−1) and residue-C input (X, Mg C ha−1). Litter and undecomposed residue amounted to 0.32 and 0.67 Mg C ha−1 per year in the M8 and M16 plots, respectively. After 4 years of straw application, SOC stocks (0–10 cm) were 19.6, 25.6 and 26.5 Mg C ha−1 in the M0, M8 and M16 treatments, respectively. The results show that soil mulching has beneficial effect on SOC sequestration and strongly influence the temporal pattern of CO2 emission from soils.  相似文献   
100.
The West Asia–North Africa (WANA) region has a land area of 1.7 billion ha, and a population of 600 million. Desertification and soil degradation are severe problems in the region. The problem of drought stress is exacerbated by low and erratic rainfall and soils of limited available water holding capacity and soil organic carbon (SOC) content of less than 0.5 per cent. The SOC pool of most soils has been depleted by soil degradation and widespread use of subsistence and exploitative farming systems. The historic loss of a SOC pool for the soils of the WANA region may be 6–12 Pg compared with the global loss of 66–90 Pg. Assuming that 60 per cent of the historic loss can be resequestered, the total soil‐C sink capacity of the WANA region may be 3–7 Pg. This potential may be realized through adoption of measures to control desertification, restore degraded soils and ecosystems, and improve soil and crop management techniques that can enhance the SOC pool and improve soil quality. The strategies of soil‐C sequestration include integrated nutrient management (INM) and recycling, controlled grazing, and growing improved fodder species on rangeland. Improved technologies for cropland include use of INM and biofertilizers, appropriate tillage methods and residue management techniques, crop rotations and cover crops, and water and nutrient recycling technologies. Through adoption of such measures, the potential of soil‐C sequestration in the WANA region is 0.2–0.4 Pg C yr−1. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号