首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1143篇
  免费   67篇
  国内免费   9篇
林业   71篇
农学   76篇
基础科学   27篇
  431篇
综合类   107篇
农作物   106篇
水产渔业   67篇
畜牧兽医   202篇
园艺   28篇
植物保护   104篇
  2023年   19篇
  2022年   54篇
  2021年   75篇
  2020年   75篇
  2019年   94篇
  2018年   118篇
  2017年   107篇
  2016年   82篇
  2015年   38篇
  2014年   45篇
  2013年   137篇
  2012年   58篇
  2011年   75篇
  2010年   41篇
  2009年   26篇
  2008年   38篇
  2007年   27篇
  2006年   26篇
  2005年   11篇
  2004年   9篇
  2003年   9篇
  2002年   8篇
  2001年   1篇
  2000年   4篇
  1999年   1篇
  1998年   5篇
  1997年   4篇
  1996年   6篇
  1994年   3篇
  1993年   3篇
  1992年   1篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1986年   2篇
  1985年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
排序方式: 共有1219条查询结果,搜索用时 15 毫秒
111.
More than 50% of global soil organic carbon stocks are stored below 20 cm of soil depth capable of massively altering global C cycle and climate. However, subsoil C dynamics are largely overlooked implicitly assuming that surface and subsoil C dynamics are similar. Here, we compared the soil C dynamics in surface and subsurface soil layers in response to nitrogen and maize leaf litter additions. Soils, sampled from 0 to 5, 15 to 35, 35 to 55 and 55 to 75 cm depths, were incubated at 25°C after adding litter, nitrogen (NH4NO3) or litter plus nitrogen. Soil respiration (C mineralization) was measured throughout the incubation period. Litter addition significantly increased C mineralization in all the soil layers. However, the soil CO2 release relative to control was more than twofold higher in 15–35 and 35–55 cm soil layers than the surface layer. Nitrogen additions significantly decreased C mineralization in 0–15 cm soil, increased in 35–55 cm and had minimal effects in the 15–35 and 55–75 cm layers. Different soil C dynamics in surface and subsurface soil layers found in our study contradict the general assumption that soil C dynamics may be treated similarly along different soil depths.  相似文献   
112.
113.
Plant growth regulators are biologically active signaling molecules that regulate a number of plant physiological processes. Auxin (indole-3-acetic acid) is an important plant growth regulator and is synthesized within plant tissues through L-tryptophan (L-TRP)-dependent and -independent pathways. It has been found that plants respond to exogenously applied L-TRP due to insufficient endogenous auxin biosynthesis. The exogenous application of L-TRP is highly significant for normal plant growth and development. L-tryptophan is applied through foliar spray, seed priming, and soil application. Soil-applied L-TRP is either directly taken up by plants or metabolized to auxin by soil microbiota and then absorbed by plant roots. Similarly, foliar spray and seed priming with L-TRP stimulates auxin synthesis within plants and improves the growth and productivity of agricultural crops. Furthermore, L-TRP contains approximately 14% nitrogen (N) in its composition, which is released upon its metabolism within a plant or in the rhizosphere and plays a role in enhancing crop productivity. This review deals with assessing crop responses under the exogenous application of L-TRP in normal and stressed environments, mode of action of L-TRP, advantages of using L-TRP over other auxin precursors, and role of the simultaneous use of L-TRP and auxin-producing microbes in improving the productivity of agricultural crops. To the best of our knowledge, this is the first review reporting the importance of the use of L-TRP in agriculture.  相似文献   
114.
A study was conducted to determine the effect of macronutrients (NPK) in alleviating the adverse effects of simulated acid rain (SAR) on sunflower (Helianthus annuus L.). In addition to control (T0), three different treatments, i.e., SAR (HNO3) of pH 3 (T1), NPK (T2), and SAR + NPK (T3), were applied on two sunflower cultivars, i.e., FH-37 and FH-385. The experiment was set up in CRD (completely randomized design) with four replicates of each treatment. Chlorophyll a, b, total chlorophyll, carotenoids, ion contents (NPK), and gas exchange characters were determined. Acid rain remarkably reduced the chlorophyll pigments, NPK ionic content, photosynthetic rate, transpiration rate, and stomatal conductance, while an increase in internal CO2 concentration and water use efficiency was noted in both the cultivars. The mixture of NPK with SAR exhibited positive impact to lessen the toxicity caused by acid. Among cultivars, FH-385 showed better performance as compared to FH-37.  相似文献   
115.
A solution culture study was conducted to compare the phosphorus (P) remobilization efficiency of four wheat cultivars under induced P deficiency. Wheat cultivars, i.e. Sarsabz, NIA-Sunder, NIA-Amber and NIA-Saarang were initially grown on adequate P nutrition for 30 days and then exposed to P-free nutrient solution for next 15 days to study P remobilization. Completely randomized design (CRD) with ten replicates per cultivar was employed. Cultivars varied for biomass production, P concentration, P uptake, and P utilization efficiency at both harvests. Overall, more than 75% of absorbed P was mobilized from older leaves to younger leaves as well as roots of all cultivars during P-omission period. However, cultivars could not produce significant variations (P < 0.05) in P remobilization, which implied that P remobilization was only a stress response to P deficiency in wheat cultivars and it could not be related to P utilization efficiency of these cultivars.  相似文献   
116.
Relations between nitrogen (N) nutrition and salinity tolerance in plants are multifaceted and varies significantly depending on many soil and plant factors. Saline environment might experience an N dilemma due to the opposing effects of salt ions on N uptake, translocation and metabolism within the plant body. Adequate regulation of N under saline conditions can be a promising approach to alleviate salinity’s effects on plants by ameliorating ion toxicity and nutrient imbalances through its impacts on the uptake and redistribution of salt ions within the plant. Certain N-containing compounds including proline, glycine betaine, proteins and polyamines help the plants to tolerate salinity through their involvement in improving water uptake and water use efficiency, membrane integrity, enzyme activation, hormonal balance, chlorophyll synthesis, stimulation of photosystems and CO2 assimilation under salinity stress. Nitrogen, particularly NO3? represents a stress signal that triggers the activation of antioxidant enzymes to protect the plants against salinity-induced oxidative damage. Furthermore, the source/form of N application can affect not only N-interactions but also the behavior of other nutrients in stress environment. The present review deals with N-salinity relations in plants, particularly glycophytes, emphasizing on N-induced mechanisms which can improve plant adaptation to saline environment.  相似文献   
117.
Here, two Punica species, viz., P. protopunica Balf. fil., reported as native to Socotra, and P. granatum L., were compared for the first time. Analysis of one P. protopunica and eleven P. granatum accessions was performed using three molecular markers, i.e., sequence related amplified polymorphism (SRAP), target region amplification polymorphism (TRAP), and intron targeted amplified polymorphism (ITAP), along with analysis of pgWD40 sequences, a gene involved in anthocyanin biosynthesis. All markers revealed the relationship between the two species and placed them at 33% similarity. SRAP, TRAP, and ITAP generated a total of 299, 260, and 160 bands, respectively. Of these, 78, 74, and 41 bands were specific for P. protopunica, and 92, 85, and 57 bands, respectively, were shared between both species. Sequence analysis of pgWD40~870 bp amplicons exhibited 100% identity among P. granatum accessions and 98% identity to that of P. protopunica. Phylogenetic analysis of WD40 sequences from monocot and dicot species, including both Punica species confirmed the relation between P. protopunica and P. granatum, supporting earlier reports that P. protopunica could be an ancestral species of P. granatum. Furthermore, the genetic diversity among and within P. granatum accessions from Egypt (3), Mexico (5), and Yemen (3) was assessed. Molecular marker-based relationships among region-bulked accessions was approximately the same (~90% similarity), whereas the degree of genetic variation was altered within each region. Specific bands (alleles) for accessions of each region along with those shared among them were identified. Thus, these bands could be used for pomegranate genotyping and breeding programs.  相似文献   
118.

Purpose

Soil contamination with heavy metals, such as Cd and Pb, has caused severe health and environmental risks all over the world. Possible eco-friendly solutions for Cd and Pb immobilization were required to reduce its mobility through various cost-effective amendments.

Materials and methods

A laboratory incubation study was conducted to assess the efficiency of biochar (BC), zeolite (ZE), and rock phosphate (RP) as passivators for the stabilization of Cd and Pb in paddy soil as well as soil microbial biomass. Various extraction techniques were carried out: a sequential extraction procedure, the European Community Bureau of Reference (BCR), toxicity characteristic leaching procedure (TCLP) test, and single extraction with CaCl2. The impact of passivators on soil pH, dissolved organic carbon (DOC), and microbial biomass (carbon, nitrogen, and phosphorus) was examined in the metal contaminated soil.

Results and discussion

The results showed that the exchangeable portion of Cd in soil was significantly reduced by 34.8, 21.6, and 18.8% with ZE, RP, and BC at a 3% application rate, respectively. A similar tendency of reduction in Pb soluble portion was observed by ZE (9.6%), RP (20%), and BC (21.4%) at a 3% application rate. Moreover, the TCLP leachate of Cd and Pb was apparently reduced by 17 and 30.3% with BC at a 3% application dose, respectively, when compared to the control. Soil pH, nutrients, and microbial biomass C, N, and P were significantly increased with the addition of BC, RP, and ZE passivators.

Conclusions

The results showed that the incorporation of BC, ZE, and RP significantly reduced the Cd and Pb mobility in paddy soil as well as enhanced soil nutrients and microbial biomass. Overall, among all the amendments, rice straw derived-BC performed better for Cd and Pb immobilization in paddy soil.
  相似文献   
119.
We investigated the effect of exogenously applied silicon (Si) on the growth and physiological attributes of wheat grown under sodium chloride salinity stress in two independent experiments. In the first experiment, two wheat genotypes SARC-3 (salt tolerant) and Auqab 2000 (salt sensitive) were grown in nutrient solution containing 0 and 100 mM sodium chloride supplemented with 2 mM Si or not. Salinity stress substantially reduced shoot and root dry matter in both genotypes; nonetheless, reduction in shoot dry weight was (2.6-fold) lower in SARC-3 than in Auqab 2000 (5-fold). Application of Si increased shoot and root dry weight and plant water contents in both normal and saline conditions. Shoot Na+ and Na+:K+ ratio also decreased with Si application under stress conditions. In the second experiment, both genotypes were grown in normal nutrient solution with and without 2 mM Si. After 12 days, seedlings were transferred to 1-l plastic pots and 150 mM sodium chloride salinity stress was imposed for 10 days to all pots. Shoot growth, chlorophyll content and membrane permeability were improved by Si application. Improved growth of salt-stressed wheat by Si application was mainly attributed to improved plant water contents in shoots, chlorophyll content, decreased Na+ and increased K+ concentrations in shoots as well as maintained membrane permeability.  相似文献   
120.
Adequate regulation of mineral nutrients plays a fundamental role in sustaining crop productivity and quality under salt stress. We investigated the ameliorative role of potassium (K as K2SO4) in overcoming the detrimental effects of sodium chloride (NaCl) on sugarcane genotypes differing in salt tolerance. Four levels of NaCl (0, 100, 130 and 160 mM) were imposed in triplicate on plants grown in gravel by supplying 0 and 3 mM K. The results revealed that application of NaCl significantly (p ≤ 0.05) increased sodium (Na+) but decreased K+ concentrations in shoots and roots of both genotypes with a resultant decrease in K+/Na+ ratios. Physical growth parameters and juice quality were also markedly reduced with increasing NaCl concentrations compared with controls. However, addition of K alleviated the deleterious effects of NaCl and improved plant growth under salt stress. Cane yield and yield attributes of both genotypes were significantly (p ≤ 0.05) higher where K was added. Juice quality was also significantly (p ≤ 0.05) improved with the application of K at various NaCl levels. The results suggested that added K interfered with Na+, reduced its uptake and accumulation in plant tissues and consequently improved plant growth and juice quality in sugarcane.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号