首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   491篇
  免费   15篇
林业   61篇
农学   17篇
基础科学   5篇
  157篇
综合类   60篇
农作物   13篇
水产渔业   20篇
畜牧兽医   148篇
园艺   4篇
植物保护   21篇
  2022年   4篇
  2021年   6篇
  2020年   9篇
  2019年   9篇
  2018年   7篇
  2017年   8篇
  2016年   6篇
  2015年   12篇
  2014年   9篇
  2013年   10篇
  2012年   23篇
  2011年   26篇
  2010年   26篇
  2009年   21篇
  2008年   30篇
  2007年   37篇
  2006年   29篇
  2005年   31篇
  2004年   17篇
  2003年   15篇
  2002年   12篇
  2001年   6篇
  2000年   11篇
  1999年   15篇
  1992年   5篇
  1990年   8篇
  1989年   4篇
  1988年   7篇
  1987年   4篇
  1986年   5篇
  1984年   4篇
  1983年   6篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1977年   2篇
  1974年   2篇
  1973年   2篇
  1972年   3篇
  1971年   3篇
  1970年   5篇
  1969年   3篇
  1967年   2篇
  1960年   2篇
  1941年   3篇
  1940年   3篇
  1939年   11篇
  1938年   4篇
  1937年   9篇
  1902年   2篇
排序方式: 共有506条查询结果,搜索用时 31 毫秒
81.
Water infiltration is an important hydrological process that influences runoff and soil loss patterns in mountain ecosystems. In this paper, we present results on spatial variation in infiltration in croplands on the volcanic soils of Mt. Elgon, in Eastern Uganda. Twelve experimental sites with slope gradients ranging from 12 to 32% were established. Infiltration tests were carried out with a double ring infiltrometer and three measurements were taken at the upper, middle and lower sections of each experimental site to assess the local variability of infiltration. In addition soil information was collected on each experimental site. The soil infiltration data were then evaluated to fit to four commonly used water infiltration models: (1) Philip (1957), (2) Green–Ampt (1911), (3) Horton (1940) and (4) Kostiakov (1932). The twelve experimental sites cover two cropping systems: annual (6 sites) and perennial (6 sites) crops. Based on the results, we examine the spatial variability of infiltration, the relationship of infiltration to landscape position, and the influence of soil composition on infiltration rates on the slopes. The factors affecting spatial variability of soil infiltration were analysed using correlation and regression techniques. Steady state infiltration rates generally increased with the slope gradient and were crop type independent (P < 0.05). The performance of the four applied water infiltration models was generally good with mean R2 values ranging from 0.79 to 0.87, although all the models tended to over-predict the steady state infiltration rates at most sites. Overall, the Philip's and Kostiakov gave better results than the Horton and Green–Ampt models in reproducing the infiltration process on Mt. Elgon.  相似文献   
82.
Zn and Pb release of sphalerite (ZnS)-bearing mine waste tailings   总被引:2,自引:0,他引:2  
Background, aim, and scope  Contaminated mine drainage water has become a major hydrogeological and geochemical problem. Release of soluble metal contaminants and acidity from mining sites can pose serious chemical risks to surface and groundwater in the surrounding environment, and it is an important socio-economic factor addressed by working groups like SUITMA Morel and Heinrich (J Soils Sediments 8:206–207, 2008). The release of Zn and Pb from sulfide-bearing flotation residues of a small scale mine in Western Germany is investigated with focus on metal transfer to soil solution. Total contents of the soil material as well as soil water sampled with suction cups were analyzed. The influence of pH on leaching behavior was investigated with pHstat tests. Isotopic analyses helped assessing seepage water velocity. The aim of this study was the assessment of the environmental behavior of zinc and lead caused by the weathering of sulfide-bearing mine tailings. Especially, we address in this paper the dissolution of sphalerite (ZnS) in contrast to the well-known dissolution processes of pyrite (FeS2). Materials and methods  Total metal contents of the soil samples were analyzed by energy-dispersive X-ray fluorescence spectroscopy, total C concentration was measured using a CHNS elemental analyzer. X-ray diffraction (XRD) spectra were recorded from powdered soil samples. Soil water was sampled in nylon suction cups. Electrical conductivity (EC), pH, and temperature of the soil water samples were measured in the field immediately after sampling. Major anions (F, Cl, NO2, NO3, SO4) were analyzed by ion chromatography, major cations (Ca, Na, K, Li) were analyzed by flame photometry, heavy metals (Zn, Pb, Fe, Mn, and Mg) by flame atomic absorption spectrometry. Tritium was analyzed by liquid scintillation counting (LSC), 18O and 2H were analyzed by isotope ratio mass spectrometry (IRMS). pHstat tests were performed at four different pH values between 2 and 5. Results  Total Zn contents of the soil samples averaged 10 g kg−1, Pb contents averaged 2.5 g kg−1, Fe 22 g kg−1, S 8.0 g kg−1, and total carbon 4.0 g kg−1. Below 2-m depth, soil samples had neutral pH values. Toward the surface, pH decreased down to pH 5.4 in P1 and P3, and to pH 5.9 in core P2, respectively. Dissolved contents of major ions (Mg, Ca, K, SO4, and HCO3) in the soil solution increased with depth. Metal concentrations (Fe, Mn, Zn) decreased with depth. The solution pH was neutral to slightly alkaline in samples below 2 m and slightly acidic (pH 6) at 1 m depth. Tritium values are around 7 TU and correspond to modern rain, i.e., after 1975. Stable isotope values plot on the global meteoric water line. The pHstat tests provide two kinds of information, the acid neutralization capacity after 24 h (ANC24) and the release of metals depending on pH. The ANC24 increases linearly with decreasing pH from about 60 mmol(eq) kg−1 at pH 5 to about 460 mmol(eq) kg−1 at pH 2. Zn and Fe release show a strong increase with decreasing pH to 126 and 142 mmol(eq) kg−1, respectively. Pb release increases at pH <4 and Mn release at pH <5, both to about 10 mmol(eq) kg−1. Discussion  With an average of 10 g kg−1, this field site is highly enriched in Zn. In the oxidized topsoil, Zn concentrations are significantly lower than in the anoxic subsoil. The distribution pattern of total Zn contents and soil pH values indicate that the topsoil, which is prone to oxidation and acidification, is already depleted in Zn. Only in soil core P2, Zn (and Fe) contents in the topsoil were higher than in the subsoil. Oxidation of the sulfidic material leads to redistribution into mobilizable species. High soil water concentrations (10 to 15 mg L−1) can be found at acidic pH. The dominant Zn species in the soil solution is Zn2+. At neutral pH, Zn concentrations are below 0.001 mg L−1. During the soil passage, the contaminated seepage water enters the anoxic subsoil with pH buffering carbonates. Results indicate that Zn is immobilized there. However, when the acid neutralization capacity is exhausted, a breakthrough of dissolved Zn to the groundwater has to be expected. Lead averages 2.5 g kg−1 inside the flotation dump. In contrast to Zn, the first centimeters of the oxidized topsoil with high TOC contents show higher Pb contents than the anoxic subsoil. About 80% of the cation exchange capacity in the topsoil is occupied by Pb. In contrast to Zn, Pb is not abundant as aqueous species at slightly acidic pH. Values lower than pH 4 are necessary to mobilize Pb in higher amounts, as pHstat experiments confirm. Hence, Pb is not expected to be leached out until the buffer capacity of the soil is exhausted. Conclusions  The environmental fate and behavior of Zn and Pb in the flotation dump is strongly depending on pH and redox conditions. Oxidation of sphalerite leads to a transfer of Zn from immobile to easily mobilizable species. Sulfide oxidation leads to an acidification of the topsoil where the buffer capacity is already exhausted due to the leaching of carbonates. At acidic pH, Zn is transferred to the aqueous phase and leached to the subsoil where soil pH is neutral. Electron supply and the buffer capacity of the material are found to be the main factors controlling the mobility of Zn. In contrast, the transfer of comparable amounts of Pb to the aqueous phase requires pH values <4. Since Pb is enriched in the topsoil, not leaching to the groundwater, but direct uptake (e.g., children, animals) and uptake by plants is the highest environmental risk. If the acidification of the soil proceeds with the same rate as in the last 40 years, it will reach the bottom of the tailing in about 200 years and a breakthrough of metals to the groundwater has to be expected. Recommendations and perspectives  The behavior of the different metals and their environmental impact depends on the different metal properties as well as on external conditions, e.g. pH, redox conditions, buffer capacity, and groundwater recharge. To assess the future release of metals from a flotation dump it is crucial to determine the main processes leading to acidification, the buffer capacity, and heavy metal binding forms. The release of heavy metals to the groundwater could be prevented by liming or other buffering techniques de Andrade et al. (J Soils Sediments 8:123–129, 2008). Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
83.
Application of a sensomics approach on the water-soluble extract of a matured Gouda cheese including gel permeation chromatography, ultrafiltration, solid phase extraction, preparative RP-HPLC, and HILIC combined with analytical sensory tools enabled the comprehensive mapping of bitter-tasting metabolites. LC-MS-TOF and LC-MS/MS, independent synthesis, and sensory analysis revealed the identification of a total of 16 bitter peptides formed by proteolysis of caseins. Eleven previously unreported bitter peptides were aligned to beta-casein, among which 6 peptides were released from the sequence beta-CN(57-69) of the N terminus of beta-casein and 2 peptides originated from the C-terminal sequence beta-CN(198-206). The other peptides were liberated from miscellaneous regions of beta-casein, namely, beta-CN(22-28), beta-CN(74-86), beta-CN(74-77), and beta-CN(135-138), respectively. Six peptides were found to originate from alpha(s1)-casein and were shown to have the sequences alpha(s1)-CN(11-14), alpha(s1)-CN(56-60), alpha(s1)-CN(70/71-74), alpha(s1)-CN(110/111-114), and alpha(s1)-CN(135-136). Sensory evaluation of the purified, synthesized peptides revealed that 12 of these peptides showed pronounced bitter taste with recognition thresholds between 0.05 and 6.0 mmol/L. Among these peptides, the decapeptide YPFPGPIHNS exhibited a caffeine-like bitter taste quality at the lowest threshold concentration of 0.05 mmol/L.  相似文献   
84.
A stable isotope dilution assay was developed for the quantitation of the hazelnut odorant 5-methyl-(E)-2-hepten-4-one by mass chromatography using synthesized [(2)H](2)-5-methyl-(E)-2-hepten-4-one as the internal standard. Application of the method on two batches of commercial hazelnut oils, processed from either roasted or unroasted nuts, revealed 6.4 microg 5-methyl-(E)-2-hepten-4-one per kg of unroasted oil whereas 315.8 microg per kg was determined in the roasted nut oil. The about 50-fold higher amount of 5-methyl-(E)-2-hepten-4-one in roasted hazelnut oil suggested the necessity of a thermal treatment to generate the flavor compound. Pan frying of raw hazelnuts (9 to 15 min) or boiling of the crushed nut material for 1 h in water led to an increase of 5-methyl-(E)-2-hepten-4-one by factors of 600 and 800, respectively, thereby corroborating that the major part of the nut flavorant is formed during heat treatment from a yet unknown precursor in hazelnuts.  相似文献   
85.
Yield and water productivity of potatoes grown in 4.32 m2 lysimeters were measured in coarse sand, loamy sand, and sandy loam and imposed to full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation strategies. PRD and DI as water-saving irrigation treatments received 65% of FI after tuber bulking and lasted for 6 weeks until final harvest. Analysis across the soil textures showed that fresh yields were not significant between the irrigation treatments. However, the same analysis across the irrigation treatments revealed that the effect of soil texture was significant on the fresh yield and loamy sand produced significantly higher fresh yield than the other two soils, probably because of higher leaf area index, higher photosynthesis rates, and “stay-green” effect late in the growing season. More analysis showed that there was a significant interaction between the irrigation treatments and soil textures that the highest fresh yield was obtained under FI in loamy sand. Furthermore, analysis across the soil textures showed that water productivities, WP (kg ha−1 fresh tuber yield mm−1 ET) were not significantly different between the irrigation treatments. However, across the irrigation treatments, the soil textures were significantly different. This showed that the interaction between irrigation treatments and soil textures was significant that the highest significant WP was obtained under DI in sandy loam. While PRD and DI treatments increased WP by, respectively, 11 and 5% in coarse sand and 28 and 36% in sandy loam relative to FI, they decreased WP in loamy sand by 15 and 13%. The reduced WP in loamy sand was due to nearly 28% fresh tuber yield loss in PRD and DI relative to FI even though ET was reduced by 9 and 11% in these irrigation treatments. This study showed that different soils will affect water-saving irrigation strategies that are worth knowing for suitable agricultural water management. So, under non-limited water resources conditions, loamy sand produces the highest yield under full irrigation but water-saving irrigations (PRD and DI) are not recommended due to considerable loss (28%) in yield. However, under restricted water resources, it is recommended to apply water-saving irrigations in sandy loam and coarse sand to achieve the highest water productivity.  相似文献   
86.

Purpose

Stormwater bioretention systems are widely used to treat diffuse infiltration of runoff from paved surfaces and roofs. Substantial questions remain about the hydraulic performance and the accumulation of pollutants in systems over the long term. Data of metal accumulation of systems with operational times >10 years currently is limited. This study deals with the accumulation of metals in a variety of long-term operational bioretention systems (11–22 years) to derive further operation recommendations for the water authorities.

Materials and methods

The hydraulic conductivity of the bioretention systems in field was measured using a double ring infiltrometer. Media soil samples from 22 diverse designed systems were collected across the surface and at intervals up to a depth of 65 cm to determine the spatial accumulation of Zn, Cu, Pb and Cd. Leaching experiments of selected bioretention media soils were derived to assess the metal leachability by water.

Results and discussion

The hydraulic performance of most bioretention systems still met the technical guidelines of Germany even after long-term operation. Considerable metal accumulation occurred in the topsoil (0–20 cm). Median concentrations of all metals are highest at the soil surface (0–10 cm), decreasing with increasing depth. High concentrations were determined at the inflow points of the runoff waters, whereas concentrations at more than 1.5 m distance from the inflow were only slightly increased compared to the initial soil concentrations. Leachability tests have shown that most of the metals deposited in bioretention soils are only slightly water soluble. No concentrations exceeding the threshold values of the German Soil Contamination Ordinance for the pathway soil to groundwater could be determined.

Conclusions

The hydraulic conductivity of the bioretention systems is given even well after long-term operation. Most of the metal accumulation is concentrated in the top 20 cm; concentrations decrease rapidly and mostly reach background/initial concentrations after depths of 30 cm. The water-soluble metals are all below the trigger values of the German Soil Act. This underlines the strong retention capacity of long-term bioretention systems after long-term operational times.
  相似文献   
87.
Purpose  To investigate whether sheets of fetal retinal allografts can integrate into the dystrophic Abyssinian cat retina with progressive rod cone degeneration.
Methods  Fetal retinal sheets (cat gestational day 42), incubated with BDNF microspheres, were transplanted to the subretinal space of four cats at an early disease stage. Cats were studied by fundus examinations, bilateral full-field flash ERGs, and indocyanine green and fluorescein angiograms up to 4 months following surgery. E42 donor and transplanted eyes were analyzed by histology and immunohistochemistry for retinal markers.
Results  Funduscopy and angiography showed good integration of the transplants in two of four cats, including extension of host blood vessels into the transplant and some scarring in the host. In these two, transplants were found in the subretinal space with laminated areas, with photoreceptor outer segments in normal contacts with the host retinal pigment epithelium. In some areas, transplants appeared to be well-integrated within the host neural retina. Neither of these two cats showed functional improvement in ERGs. In the other two cats, only remnants of donor tissue were left. Transplants stained for all investigated cellular markers. No PKC immunoreactivity was detected in the fetal donor retina at E42, but developed in the 4-month-old grafts.
Conclusions  Fetal sheet transplants can integrate well within a degenerating cat retina and develop good lamination of photoreceptors. Functional improvement was not demonstrated by ERG in cats with well-laminated grafts. Transplants need to be further evaluated in cat host retinas with a more advanced retinal degeneration using longer follow-up times.  相似文献   
88.
Impaired insulin sensitivity is increasingly recognised in cats, but sequences of genes involved in insulin-signalling are largely undetermined in this species. In this study, extended feline mRNA sequences were determined for the adiponectin, glucose transporter-1 (GLUT1), GLUT4, peroxisome proliferative activated receptor-gamma1 (PPARgamma1), PPARgamma2, plasminogen activator inhibitor-1 (PAI-1), monocyte chemoattractant protein-1 (MCP-1) and insulin receptor genes. Conserved dog-specific primers identified from human-dog mRNA alignments were used to amplify feline cDNA in the polymerase chain reaction (PCR). The feline sequences determined by this method were used to design feline-specific primers suitable for real-time PCR for quantification of gene expression in insulin sensitive tissues of healthy cats. Partial sequences of feline mRNAs had 86-95% identity with dog and human genes. Expression of adiponectin, GLUT1, GLUT4, PPARgamma1, PPARgamma2, PAI-1 and insulin receptor mRNA was detected and quantified in subcutaneous and visceral fat and skeletal muscle, whereas MCP-1 mRNA was detected in adipose tissue but not in skeletal muscle. Further characterisation of genes related to glucose metabolism in cats will provide additional insights into insulin-signalling mechanisms in this species.  相似文献   
89.
To assess the impact of silver nanoparticles (SNP) on soil microbial biomass, microbial activity, and enzyme activities, a medium‐term experiment over four months was performed in which soil was applied with increasing SNP‐application rates compared to a control. The treatments included a single SNP‐application dose analogous to 3.2 (SNP‐1), 32 (SNP‐10), and 320 (SNP‐100) μg Ag (kg dry soil)–1 and a control without SNP application, respectively. At the end of the experiment, clear evidence was found that microbial biomass was significantly decreased with increasing SNP‐application rate, while basal respiration was increased in this direction. In addition, metabolic quotients were increased in the SNP treatments compared to the control. This is at least circumstantial evidence that the efficiency of substrate use was lowered in SNP‐treated soils. Another suggestion might be that after four months microbial‐community composition was changed due to SNP. No treatment effects were found for microbial biomass N, fluorimetric enzymes, and the abiotic soil parameters pH and soil organic C.  相似文献   
90.
Non-fouling surfaces that resist non-specific adsorption of proteins, bacteria, and higher organisms are of particular interest in diverse applications ranging from marine coatings to diagnostic devices and biomedical implants. Poly(ethylene glycol) (PEG) is the most frequently used polymer to impart surfaces with such non-fouling properties. Nevertheless, limitations in PEG stability have stimulated research on alternative polymers that are potentially more stable than PEG. Among them, we previously investigated poly(2-methyl-2-oxazoline) (PMOXA), a peptidomimetic polymer, and found that PMOXA shows excellent anti-fouling properties. Here, we compare the stability of films self-assembled from graft copolymers exposing a dense brush layer of PEG and PMOXA side chains, respectively, in physiological and oxidative media. Before media exposure both film types prevented the adsorption of full serum proteins to below the detection limit of optical waveguide in situ measurements. Before and after media exposure for up to 2 weeks, the total film thickness, chemical composition, and total adsorbed mass of the films were quantified using variable angle spectroscopic ellipsometry (VASE), X-ray photoelectron spectroscopy (XPS), and optical waveguide lightmode spectroscopy (OWLS), respectively. We found (i) that PMOXA graft copolymer films were significantly more stable than PEG graft copolymer films and kept their protein-repellent properties under all investigated conditions and (ii) that film degradation was due to side chain degradation rather than due to copolymer desorption.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号