首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36848篇
  免费   2437篇
  国内免费   3609篇
林业   2407篇
农学   1958篇
基础科学   1965篇
  3735篇
综合类   17349篇
农作物   2420篇
水产渔业   1454篇
畜牧兽医   6978篇
园艺   2631篇
植物保护   1997篇
  2024年   239篇
  2023年   933篇
  2022年   2073篇
  2021年   1838篇
  2020年   1643篇
  2019年   1641篇
  2018年   1236篇
  2017年   1736篇
  2016年   1235篇
  2015年   1825篇
  2014年   1895篇
  2013年   2300篇
  2012年   3023篇
  2011年   3167篇
  2010年   3016篇
  2009年   2742篇
  2008年   2657篇
  2007年   2416篇
  2006年   1924篇
  2005年   1648篇
  2004年   949篇
  2003年   597篇
  2002年   592篇
  2001年   539篇
  2000年   546篇
  1999年   199篇
  1998年   49篇
  1997年   29篇
  1996年   20篇
  1995年   19篇
  1994年   22篇
  1993年   14篇
  1992年   16篇
  1991年   12篇
  1990年   15篇
  1989年   12篇
  1988年   7篇
  1987年   9篇
  1986年   8篇
  1985年   4篇
  1984年   2篇
  1983年   1篇
  1981年   5篇
  1978年   1篇
  1965年   2篇
  1964年   1篇
  1963年   1篇
  1962年   11篇
  1956年   18篇
  1955年   7篇
排序方式: 共有10000条查询结果,搜索用时 140 毫秒
991.
探索沙地春玉米最佳滴灌施肥方案是提高其生育期氮积累和氮效率的有效途径。试验采用三因素D饱和最优设计,研究拔节期、抽雄期和收获期玉米产量、生育期植株不同器官氮积累和硝态氮含量的差异,结果表明:(1)随着玉米生育期推进,整株氮积累逐渐增加,叶片、茎下降,籽粒增加,高氮处理(氮肥240 kg·hm~(-2))显著高于其他处理;(2)N_3P_1K_3处理产量最高(13 875 kg·hm~(-2)),氮素转运量和营养器官贡献率显著高于其它处理,氮收获指数和氮肥偏生产力较低;(3)土壤硝态氮含量随植株生长吸收逐渐降低,以滴头处0~20 cm硝态氮含量最高,20~60 cm逐渐降低;(4)不同施氮处理的硝态氮含量有差异,拔节期施肥处理均与CK差异显著,抽雄期和收获期中氮处理和高氮处理对硝态氮影响显著。高氮处理中土壤0~60 cm硝态氮含量与播前基本一致,维持了土壤硝态氮的平衡。综合考虑产量、氮效率及土壤硝态氮平衡方面的因素,膜下滴灌条件下,陕北风沙滩地玉米合理的施肥为N_3P_1K_3处理,即施氮肥240 kg·hm~(-2),磷肥80 kg·hm~(-2),钾肥225 kg·hm~(-2)。  相似文献   
992.
为培育金针菇尿嘧啶营养缺陷型双核体菌株,将金针菇尿嘧啶营养缺陷型单核体菌株NG1-65、NG1-92和NG1-95(A1B1)分别与可亲和的野生型单核菌株DG1-29(A2B2)杂交得到3株杂交菌株SGN1、SGN2和SGN3,通过栽培试验获得这3株双核体菌株的子实体,收集孢子后通过涂布于选择培养基和镜检获得206株尿嘧啶营养缺陷型单核体菌株,从中随机选取30株单核体菌株,通过单单杂交得到38株尿嘧啶营养缺陷型双核体菌株。结果表明,这些尿嘧啶营养缺陷型双核体菌株在不含尿嘧啶添加物的基本培养基中无法正常生长,在PDA培养基上生长速率低于野生型菌株,在添加尿嘧啶的PDAU培养基上可以不同程度地恢复正常生长。本研究结果为进一步利用营养缺陷型菌株开展金针菇杂交育种、菌种保护等方面研究提供了一定的技术支撑。  相似文献   
993.
蚯蚓通过取食、排泄、分泌黏液、挖掘洞穴等活动,可显著改善土壤结构,提高土壤肥力。为探究蚯蚓与有机物料不同配施方式对茶园土壤肥力的调控效果与机理,设计5个处理组:不施肥(CK),不施肥+蚯蚓(BE),菜籽饼+蚯蚓(CE),茶树修剪物+蚯蚓(JE),生物质炭+蚯蚓(TE),分别进行室内模拟实验。结果显示,与不施肥(CK)相比,接种蚯蚓(BE)处理使土壤的总碳含量呈升高趋势;添加有机物料(CE、JE、TE)三个处理的土壤的全碳、全氮含量、有机质含量均高于BE组,其中TE处理最高。单独接种蚯蚓处理可提高土壤总有机质含量,接种蚯蚓配施有机物料对提高土壤肥力有明显作用,其中茶生物质炭与蚯蚓共同作用效果最好。经过3个月的培养,5个处理中土壤pH均呈降低趋势,其中BE组pH降低最大(6.81到5.82)。在采用同步辐射红外显微成像技术(SR-FTIR)对土壤微团聚体中矿物-有机复合体进行表征后,结果显示土壤团聚体中多糖、蛋白质、脂肪和黏土矿物均呈高度异质性分布,CE和JE组中黏土矿物与大分子有机物具有较高的分散性;黏土矿物与多糖的分布模式较为相似,而黏土矿物与蛋白质类物质、脂肪的分布模式有较大差异,且这种分布模式不受蚯蚓与有机物料互作的影响。各处理土壤团聚体的黏土矿物和有机官能团的相关性决定系数R2由小到大均依次为:黏土矿物-蛋白质、黏土矿物-多糖、黏土矿物-脂肪,表明黏土矿物与大分子有机物的亲和性有差异,且不受蚯蚓与有机物料互作的影响。  相似文献   
994.
稻田氮素径流损失是农业面源污染主要来源之一,以巢湖地区单季稻田为研究对象,利用该地区1957—2019年的历史气象数据,通过设定插秧区间(6月6—25日)及施肥期水位(3,10,20 cm),建立SMNRL模型,模拟不同插秧时间和田面水水位稻田氮素流失,研究降低长江中下游平原气候区单季稻田氮素径流损失风险的插秧时间与水位控制模式。结果表明:(1)施肥后,稻田田面水氮素浓度呈指数衰减,基肥期田面水氮素衰减期为9天,分蘖肥和穗肥期为7天。(2)在LW、HW组合中,各施肥期占全生育的氮素径流损失为基肥期>分蘖肥期>穗肥期。在LW组合中,基肥期为氮素径流损失高发期,基肥、分蘖肥、穗肥的氮素流失为72.4%~98.4%,1.9%~27.6%,0~8.3%。(3)控制水位比选择插秧时间对降低氮素径流损失更有效。相同水位下,适宜的插秧期氮素径流损失在全生育期施肥中合计能减少0.4~4.5 kg/hm^2,降低32.8%~80.3%;相同插秧时间下,LW、MW组合相比HW组合氮素径流损失能减少8.8~13.1 kg/hm^2,降低92.1%~98.8%。(4)在LW、MW、HW 3种组合中,插秧期分别以6月19日、6月11日、6月17日为界,将6月6—25日分为前后2个阶段,前1阶段插秧产生氮素径流损失均值显著低于后1阶段,分别低37.0%,25.0%,21.7%。(5)降低巢湖地区稻田氮素径流损失有效措施为施肥期水位控制为3 cm,并选择6月6-19日期间进行水稻插秧。  相似文献   
995.
干湿循环下崩岗土体裂隙发育对其渗透性能的影响   总被引:3,自引:2,他引:3  
渗透是崩壁降雨重分布的关键且直接影响其重力侵蚀过程。试验设计6次干湿循环,通过进行崩壁4层土壤的饱和渗透试验并结合数字图像处理技术,研究了干湿循环效应下崩壁4层土的裂隙演化规律及其对各层土饱和渗透性能的影响。结果表明:(1)随干湿循环次数的增加,表土层和红土层裂隙发育明显,裂隙率逐渐增加后趋于稳定,过渡层和砂土层几乎没有产生裂隙;表土层在第3次循环后裂隙几乎发育完全,裂隙率达到3.50%,形态纤细且破碎,而红土层在第1次循环后裂隙骨架基本定型,随着干湿循环的进行,裂隙宽度不断增大至一定程度时不再发生变化;(2)4层土壤渗透系数大小为砂土层>过渡层>红土层>表土层,表土层和红土层渗透系数随干湿循环的进行逐渐增加后趋于稳定,过渡层一直比较稳定,砂土层逐渐减小后趋于稳定;(3)土壤裂隙率与渗透系数之间存在二次函数关系,裂隙发育对土壤渗透性能的影响先增大后减小。研究结果可为降雨入渗-重分布下崩壁失稳机理研究提供科学依据。  相似文献   
996.
1,9-癸二醇是由水稻根系分泌物中发现的一种新型生物硝化抑制剂,在农业生产中可提高氮肥利用率,减少氮素损失。为建立一套超声波提取-气相色谱检测土壤中1,9-癸二醇的方法,分别对超声波提取条件(提取剂、提取次数、液料比、超声时间)和气相色谱检测参数(进样口温度、检测器温度、升温程序)进行研究。结果表明,超声波提取土壤1,9-癸二醇的最佳方法为甲醇作为提取剂超声提取1次,液料比40mL·g~(–1),超声时间30 min。气相色谱Agilent8890测定1,9-癸二醇的最佳条件为进样口温度250℃;氢火焰离子化检测器(FID)温度310℃;升温程序:初始柱温60℃,保持2 min,以20℃·min~(–1)的速率升至150℃,然后以3℃·min~(–1)的速率升至180℃,保持2 min,最后以20℃·min~(–1)的速率升至270℃。在最佳提取和测定条件下,不同浓度1,9-癸二醇的加标回收率为90.58%~94.55%。超声提取-气相色谱法检测限低、灵敏度和精密度高,快速高效、重复性好,为今后1,9-癸二醇的实际应用工作奠定了基础。  相似文献   
997.
根系分泌物与土传病害的关系研究进展   总被引:5,自引:0,他引:5  
任改弟  王光飞  马艳 《土壤》2021,53(2):229-235
根系分泌物是植物-土壤-病原微生物相互作用的桥梁,是决定病原菌-作物关系的关键生态因子,影响着土传病害的发生与发展.本文阐述了根系分泌物的定义、分类及产生机理;重点从根系分泌物的化感自毒效应,根系分泌物诱导根际微生物群落,根系分泌物影响病原菌丰度,根系分泌物影响根际土壤环境4个方面阐述了根系分泌物与土传病害的关系;并从...  相似文献   
998.
氧化亚氮(N2O)和氮气(N2)是淹水稻田土壤剖面反硝化过程的重要气态产物,可通过土水界面向大气排放,也可随水向下淋溶。秸秆生物质炭施入稻田后会改变土壤理化及微生物学性质,影响反硝化过程及N2O和N2产排。本研究依托2010年夏建立的连续秸秆生物质炭还田的稻麦轮作农田试验,通过埋设淋溶管收集土壤剖面溶液,采用气相色谱和膜进样质谱分别定量溶液中N2O和exN2(反硝化产生N2量),观测了2018和2019年水稻季不同秸秆生物质炭施用量(CK:每季0 t·hm-2;1BC:每季2.25 t·hm-2;5BC:每季11.3 t·hm-2;10BC:每季22.5 t·hm-2)下0~1 m土壤剖面溶液中N2O和exN2浓度的时空变化,评估了长期施用秸秆生物质炭对稻田土壤剖面反硝化作用及其主要气态氮产物exN2随水流失的影响。结果表明,两个稻季CK处理N2O浓度以60 cm处较高,exN2浓度则随土壤深度增加呈降低趋势。秸秆生物质炭处理能降低剖面N2O和exN2浓度,以10BC处理最为明显。其中,N2O浓度降低以60 cm处较大,exN2浓度降低随土壤深度增加而加大。施用秸秆生物质炭对土壤剖面溶液无机氮(NO3-+NH4+)含量无明显影响,但5BC和10BC处理增加了可溶性有机碳(DOC)和溶解氧(DO)浓度以及氧化还原电位(Eh)。CK处理下土壤剖面溶液N2O和exN2浓度变化与DOC、硝态氮(NO3-)及DO有关;秸秆生物质炭处理下则主要受DO和Eh控制。exN2淋溶量(按1 m深度计算)CK处理下为2.3 ~5.5 kg·hm-2,相当于无机氮和有机氮(DON)淋溶量的32%~34%,5BC和10BC处理则降低为1.7 ~3.7 kg·hm-2和1.1~1.9 kg·hm-2,上述结果表明,反硝化产生N2随水淋溶量不容忽视,秸秆生物质炭还田可改善淹水稻田土壤剖面的通气状况,增加DO,提高Eh,进而有效减少深层反硝化及其主要气态产物exN2随水流失的风险。  相似文献   
999.
[目的]对W-OH砒砂岩固结体干湿循环特性及其细观机理进行研究,为实现W-OH固结改良砒砂岩及其耐久性研究提供科学依据。[方法]采用W-OH(亲水性聚氨酯材料)对砒砂岩进行固结处理,基于无侧限抗压试验、三轴抗压试验,研究其在干湿循环条件下的力学性能,并结合SEM,EDS和称重法对其干湿循环后样品微观结构、元素和质量损失进行分析,以获得其破坏机理。[结果]W-OH砒砂岩固结体的无侧限抗压强度、弹性模量和黏聚力在1~3次干湿循环后升高;在3~9次干湿循环后,固结体的力学强度降低;9次之后,剩下高黏结力的W-OH胶结体包裹于砒砂岩颗粒表面,力学强度趋于稳定。内摩擦角在1~9次干湿循环后上下波动,9次干湿循环后趋于稳定。采用碳元素分析和质量损失分析相结合的方法对土样中W-OH流失特性进行评价,发现土样在1~9次干湿循环中W-OH胶结体逐渐降低,并在9次干湿循环后达到稳定,这与上述宏观力学变化的规律相似,验证了破坏机理,为判断其长期特性提供理论依据。[结论]研究表明可将9次干湿循环后达到稳定的W-OH砒砂岩固结体的力学性质作为土体的长期力学特性。  相似文献   
1000.
[目的]准确识别、检测建设用地空间管制分区与城市扩张之间的潜在冲突,以期为下一轮土地利用总体规划的实施与土地资源管理工作的开展提供理论参考与技术方法支撑。[方法]基于CA-Markov模型模拟预测了2020年江苏省常州市土地利用状况,在此基础上集成GIS空间分析技术,识别并检测了常州市2015—2020年建设用地空间管制分区与城市未来发展之间的潜在冲突区域。[结果](1)2020年常州市建设用地总量及新增量规模将分别达到规划目标的101.16%,159.97%,即会突破土地利用总体规划目标;禁止建设区内建设用地空间管制潜在冲突面积较少;(2)限制建设区内建设用地空间管制潜在冲突面积较大,约占新增建设用地面积的59.23%,其中约有59.15%的潜在冲突分布在武进区。[结论]在常州市下一轮土地利用总体规划编制与实施过程中,应重点强化对限制建设区内潜在冲突区域的管控。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号