首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   226篇
  免费   15篇
林业   11篇
农学   5篇
基础科学   2篇
  64篇
综合类   26篇
农作物   24篇
水产渔业   14篇
畜牧兽医   53篇
园艺   16篇
植物保护   26篇
  2023年   1篇
  2022年   9篇
  2021年   12篇
  2020年   13篇
  2019年   8篇
  2018年   19篇
  2017年   15篇
  2016年   12篇
  2015年   8篇
  2014年   17篇
  2013年   18篇
  2012年   16篇
  2011年   10篇
  2010年   16篇
  2009年   8篇
  2008年   13篇
  2007年   14篇
  2006年   6篇
  2005年   4篇
  2004年   6篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1997年   1篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1974年   1篇
排序方式: 共有241条查询结果,搜索用时 15 毫秒
231.
ABSTRACT

The need for salinity resistance in turfgrass is increasing because of the enhanced use of effluent and other low-quality water for turfgrass irrigation. Although most turfgrasses form an arbuscular mycorrhizal fungus (AMF) symbiosis, there is little information on the mycorrhization of turfgrass species. Therefore, the aim of this study was to determine the effects of three AMF species, Glomus intraradices Schenck & Smith, Glomus etunicatum Becker & Gerdemann, and Glomus deserticola Trappe & John, and a mixture thereof on the growth, productivity, and nutrient uptake of two species of cool-season turfgrasses, Challenger Kentucky bluegrass (Poa pratensis L.) and Arid tall fescue (Festuca arundinacea Schreb.), and to relate the effects to colonization of the roots by mycorrhiza to assess the dependency of the plants (mycorrhizal dependency [MD]). Following the experimental period (4 months) and measurements, the mycorrhizal inoculated plants had significantly greater biomass production compared to that of non-inoculated plants. MD and shoot mineral contents (particularly P) differed among turfgrass hosting AMF, and the highest value (13%) occurred for P. pratensis and F. arundinacea seedlings colonized with G. intraradices and G. deserticola, respectively. The P content was highest for the F. arundinacea/mixed AMF combination compared to other treatments. We confirmed that mycorrhizal inoculation (P. pratensis/G. intraradices and F. arundinacea/mixed AMF combinations) enhanced plant productivity and nutrient uptake (especially P) even under non-optimum conditions.  相似文献   
232.
Zero tillage with residues retention and optimizing nitrogen fertilization are important strategies to improve soil quality and wheat (Triticum aestivum L.) yield in rice (Oryza sativa L.)-wheat system. Field experiments were conducted on silty clay soil (Hyperthermic, and Typic Torrilfuvents) in D. I. Khan, Pakistan, to explore the impact of six tillage methods (zero tillage straw retained (ZTsr), ZT straw burnt (ZTsb), reduced tillage straw incorporated (RTsi, including tiller and rotavator), RT straw burnt (RTsb), conventional tillage straw incorporated (CTsi, including disc plow, tiller, rotavator, and leveling operations), CT straw burnt (CTsb)) and ifve nitrogen rates, i.e., 0, 100, 150, 200, and 250 kg ha-1 on wheat yield. Mean values for N revealed that spikes m-2, grains/spike, 1 000-grain weight (g), and grain yield (kg ha-1) were signiifcantly higher at 200 kg N ha-1 in both the years as well as mean over years than all other treatments. Mean values for tillage revealed that ZTsr produced highest number of spikes m-2 among tillage methods. However, grains/spike, 1 000-grain weight, and grain yield were higher in tillage methods with either straw retained/incorporated than tillage methods with straw burnt. Interaction effects were signiifcant in year 1 and in mean over years regarding spikes m-2, 1 000-grain weight, total soil organic matter (SOM), and total soil N (TSN). ZTsr produced the most spikes m-2 and 1 000-grain weight at 200 kg N ha-1. ZTsr also produced higher SOM and TSN at 200-250 kg N ha-1 at the end of 2 yr cropping. Thus ZTsr with 200 kg N ha-1 may be an optimum and sustainable approach to enhance wheat yield and soil quality in rice-wheat system.  相似文献   
233.
A ifeld experiment was conducted to study the impact of tillage, crop residue management and nitrogen (N) splitting on spring wheat (Triticum aestivum L.) yield over 2 yr (2010-2012) in a rice (Oryza sativa L.)-wheat system in northwestern Pakistan. The experiment was conducted as split plot arranged in randomized complete blocks design with three replications. Treatments comprised six tillage and residue managements:zero tillage straw retained (ZTsr), zero tillage straw burnt (ZTsb), reduced tillage straw incorporated (RTsi), reduced tillage straw burnt (RTsb), conventional tillage straw incorporated (CTsi), and conventional tillage straw burnt (CTsb) as main plots and N (200 kg ha-1) was applied as split form viz., control (no nitrogen&no splitting, N0S0);2 splits of total N, half at sowing and half at the 1st irrigation (i.e., 20 d after sowing (DAS)) (NS1);3 splits of total N, 1/3 at sowing, 1/3 at the 1st irrigation, and 1/3 at the 2nd irrigation (NS2);4 splits of total N, 1/4 at sowing, 1/4 at the 1st irrigation, 1/4 at the 2nd irrigation (45 DAS), and 1/4 at the 3rd irrigation (70 DAS) (NS3);and 4 splits of total N, 1/4 at the 1st irrigation, 1/4 at the 2nd irrigation, 1/4 at the 3rd irrigation, and 1/4 at the 4th irrigation (95DAS) (NS4) as sub plots. The results showed that the most pikes m-2, grains/spike, 1 000-grain weight, grain yield, and N use efifciency (NUE) were obtained at zero tillage, straw retained and 4 splits application of total N (i.e., at sowing 20, 45 and 70 d after sowing). The results indicated that ZTsr with application of 200 kg N ha-1 in 4 equal splits viz. at sowing 20, 45 and 70 d after sowing is an appropriate strategy that enhanced wheat yield (7 436-7 634 kg ha-1) and N efifciency (28.6-29.5 kg kg-1) in rice-wheat system.  相似文献   
234.
Water movement in a soil–plant system was evaluated based on capillary flow in a modified subsurface irrigation system that incorporates a plant-water measuring device. Water from a reservoir tank located underneath the plant pot was supplied to the root zone through a fibrous medium. Evapotranspiration was measured from the water uptake and evaluations were performed based on soil moisture distribution and mass balance. Potential evapotranspiration was used as a reference for the plant–water uptake. Data were obtained from a test plant provided with the modified subsurface irrigation system. The plant was grown in a phytotron under controlled air temperature and humidity, and a comparison was made for different levels of soil moisture condition. The experimental results confirmed the operational efficiency of the modified subsurface irrigation system for precision irrigation.  相似文献   
235.

Given its high nutritional value and capacity to grow in harsh environments, quinoa has significant potential to address a range of food security concerns. Monitoring the development of phenotypic traits during field trials can provide insights into the varieties best suited to specific environmental conditions and management strategies. Unmanned aerial vehicles (UAVs) provide a promising means for phenotyping and offer the potential for new insights into relative plant performance. During a field trial exploring 141 quinoa accessions, a UAV-based multispectral camera was deployed to retrieve leaf area index (LAI) and SPAD-based chlorophyll across 378 control and 378 saline-irrigated plots using a random forest regression approach based on both individual spectral bands and 25 different vegetation indices (VIs) derived from the multispectral imagery. Results show that most VIs had stronger correlation with the LAI and SPAD-based chlorophyll measurements than individual bands. VIs including the red-edge band had high importance in SPAD-based chlorophyll predictions, while VIs including the near infrared band (but not the red-edge band) improved LAI prediction models. When applied to individual treatments (i.e. control or saline), the models trained using all data (i.e. both control and saline data) achieved high mapping accuracies for LAI (R2?=?0.977–0.980, RMSE?=?0.119–0.167) and SPAD-based chlorophyll (R2?=?0.983–0.986, RMSE?=?2.535–2.861). Overall, the study demonstrated that UAV-based remote sensing is not only useful for retrieving important phenotypic traits of quinoa, but that machine learning models trained on all available measurements can provide robust predictions for abiotic stress experiments.

  相似文献   
236.
A study was conducted under greenhouse conditions on wheat to investigate the utilization of dissolved organic nitrogen (N) in comparison with conventionally applied inorganic N sources (INS). Nitrogen was applied at a rate of 90 kg N ha?1 in an inorganic form, an organic high molecular weight (MW) form (casein, haemoglobin, albumin), and an organic low MW amino acid form (glycine, alanine, valine). Inorganic N sources recorded the maximum response (126% to 150%) in total dry matter (DM) production while dissolved organic nitrogen (DON) sources showed 61% to 116% increase in comparison to the control treatment. Glycine gave the maximum DM production, which was comparable with both INS treatments. In hydroponics, greater utilization occurred and the shoots had a higher N content in comparison to those grown in soil. The concentration of DON and NO3? in soil after wheat harvest was similar in all the treatments.  相似文献   
237.
The present study was designed with the objective of improving the nodulation and growth of chickpea (Cicer arietinum L.) by integrating co-inoculation of Rhizobium sp. (Mesorhizobium ciceri) and plant growth promoting rhizobacteria (PGPR) carrying ACC (1-aminocyclopropane-1-carboxylate) deaminase activity with P-enriched compost (PEC) under irrigated and rainfed farming systems. PEC was prepared from fruit and vegetable waste and enriched with single super phosphate. The results demonstrated that co-inoculation significantly (P?<?0.05) increased the number of nodules per plant, nodule dry weight, pods per plant, grain yield, protein content, and total chlorophyll content under irrigated and rainfed conditions compared to inoculation with rhizobium alone. Integrating PEC with co-inoculation showed an additive effect on the nodulation and growth of chickpea under both farming systems. Analysis of leaves showed a significantly (P?<?0.05) higher photosynthetic rate and transpiration rate in comparison with inoculation with Rhizobium. Compared to irrigated farming system, co-inoculation with PEC under rainfed conditions was more beneficial in improving growth and nodulation of chickpea. Post-harvest soil analysis revealed that the integrated use of bioresources and compost enhanced microbial biomass C, available N content, dehydrogenase, and phosphomonoesterase activities.  相似文献   
238.
239.
Present study was carried to determine the sand fly species composition, breeding sites ecology, seasonal abundance, and spatial distribution in district Malakand, Khyber Pakhtunkhwa, Pakistan. In addition, risk factors associated with cutaneous leishmaniasis (CL) were also evaluated. Survey of indoor and outdoor habitats was carried out using sticky traps in 31 villages of Dargai and Batkhela tehsils of Malakand. Soil from habitats of adult and immature sand flies was analysed. Questionnaire-based household survey was also performed in these villages to assess risk factors associated with CL. Soil samples from selected CL positive households were analysed for its contents. Additionally, clinicoepidemiological data from local health centres was examined for the year 2019. Total of 3,140 sand flies belonging to 18 species were collected. Phlebotomus sergenti was the most abundant species (38.16%). Its abundance had a strong positive correlation with mean monthly relative humidity and negative correlation with average temperature. Phlebotomus sergenti and Phlebotomus papatasi were abundant at an elevation ranging from 320 to 1,120 m above sea level and in agricultural lands near human settlements. Flight height preference apparatus collected maximum sand flies at 30 cm (1ft) above the ground and all species associated negatively with height. Soil analysis from habitats of adult and immature flies showed that highest mean number of adults and immatures were recorded from silt loam which carried highest concentrations of K2O, Mg, Ca, and Zn. Number of immature sand flies correlated moderately (r = .7, p < .05) with K2O soil concentrations. There was significant similarity between organic matter contents in soil samples from positive breeding sites and CL households (Wilcoxon rank-sum test, p = .1976). In multivariate analysis model for CL risk factors, age (26–35 and >35 years), knowledge of leishmaniasis, living in a middle and upper class, preachers visit to villages, and assumption that Afghan refugees are more prone to CL were significant. CL patient's archived data from health centres showed that majority of patients had lesions on face and hands. Patient's influx was highest in February and March.  相似文献   
240.
Sixty-nine tomato genotypes representing nine Solanum species were evaluated for resistance to Cucumber mosaic virus (CMV) subgroup IA and its aphid vector Myzus persicae. Resistance was assessed by visual scoring of symptoms in the field under natural conditions, and in the greenhouse by artificial inoculations through aphid M. persicae and mechanical transmissions in the year 2007 and 2009. Considerable variation in responses was observed among the evaluation methods used. Field evaluations were found liable to errors as different levels were observed for the same genotypes in the different years, however mechanical inoculation was found to be the most useful in identifying CMV subgroup IA resistance, in contrast aphid transmission was most useful in identifying insect transmission resistance. All genotypes observed as highly resistant to CMV subgroup IA in the field or through vector transmission became systemically infected through mechanical inoculations. Using mechanical inoculation, six genotypes (TMS-1 of S. lycopersicum, LA1963 and L06049 of S. chilense, LA1353, L06145 and L06223 of S. habrochaites) were found resistant and another six (L06188 and L06238 of S. neorickii, L06219 of S. habrochaites, L05763, L05776 and L06240 of S. pennellii) were found tolerant showing mild symptoms with severity index (SI) ranging 1-2 and with delayed disease development after a latent period (LP) of 18–30 days. However, these genotypes were found to be resistant to highly resistant in the field and through inoculation by M. persicae; and they also supported low population levels of M. persicae except TMS-1. Another nine genotypes (LA2184 of S. pimpinellifolium L., LA2727 of S. neorickii, LA0111, L06221, L06127 and L06231 of S. peruvianum L., LA1306, L06057 and L06208 of S. chmielewskii) showing a susceptible response after mechanical inoculation were highly resistant, resistant and tolerant after M. persicae transmission. The resistant genotypes, identified in the present study can be exploited in the breeding programmes aimed at developing tomato varieties resistant to CMV subgroup IA and broadening the genetic base of CMV-resistant germplasm. The differences observed between mechanical and aphid transmission suggests that one should consider both evaluation methods for tomato germplasm screening against CMV subgroup IA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号