首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16383篇
  免费   0篇
林业   3620篇
农学   1293篇
基础科学   137篇
  2731篇
综合类   707篇
农作物   2095篇
水产渔业   1778篇
畜牧兽医   1049篇
园艺   1111篇
植物保护   1862篇
  2022年   1篇
  2018年   2744篇
  2017年   2702篇
  2016年   1178篇
  2015年   63篇
  2014年   14篇
  2013年   6篇
  2012年   788篇
  2011年   2123篇
  2010年   2101篇
  2009年   1253篇
  2008年   1311篇
  2007年   1574篇
  2006年   28篇
  2005年   96篇
  2004年   100篇
  2003年   150篇
  2002年   58篇
  2001年   4篇
  2000年   40篇
  1995年   1篇
  1993年   12篇
  1992年   7篇
  1990年   1篇
  1989年   5篇
  1988年   11篇
  1987年   1篇
  1977年   4篇
  1972年   1篇
  1969年   1篇
  1968年   4篇
  1967年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Nitrogen fixation during litter decomposition was studied for 34 months using litterbags containing newly fallen litter of coniferous species Cryptomeria japonica and Pinus densiflora and that of deciduous species Quercus serrata. Litterbags were set in contact with the forest floor in a deciduous broad-leaved forest near the top of a slope and in a C. japonica stand at the middle of the slope at a watershed in eastern Japan. Nitrogen-fixing activity, estimated by acetylene reduction after 16 and 19 months of incubation, was 62.65–3.86 nmoles C2H4 h−1 g−1 DW in Cryptomeria litter, but only 1.07–0.09 in Pinus and 0.72–0.04 in Quercus. The rate of N increase in decomposing litter was highest in Cryptomeria. Fungal biomass in decomposing litter, estimated by ergosterol content, increased during the initial 16 months of incubation in Cryptomeria and Quercus, and during the initial 19 months of incubation in Pinus. The litter decomposition rate was highest in Cryptomeria among the three species, due to increased N content and fungal biomass in Cryptomeria litter. Thus, N increase in decomposing Cryptomeria litter affects the subsequent N dynamics and decomposition pattern.  相似文献   
992.
993.
Arabinoglucuronoxylans (AGXs) isolated from the holocellulose of sugi (Cryptomeria japonica) and hinoki (Chamaecyparis obtusa) contained one 4-O-methyl-d-glucopyranosyluronic acid (4-O-Me-d-GlcAp) residue per 6.2 d-xylopyranose (d-Xylp) residues and one 4-O-Me-d-GlcAp residue per 3.8 d-Xylp residues. These AGXs were subjected to partial acid hydrolysis. Analyses by size exclusion chromatography and electrospray-ionization mass spectroscopy of the neutral sugar fractions in the hydrolysates showed the presence of xylooligosaccharides having a degree of polymerization of 2-8 in addition to d-Xyl, suggesting that the AGXs from sugi and hinoki contained unsubstituted chains consisting of at least eight d-Xyl residues. The acidic sugars in the hydrolysates were separated into two series of aldouronic acids composed of 4-O-Me-d-GlcAp and d-Xylp by ion-exchange chromatography. The first series included aldouronic acids from aldobiouronic acid (4-O-Me-d-GlcAp-Xyl) to aldopentaouronic acids (4-O-Me-d-GlcAp-Xyl4). The second series were aldouronic acids composed of two 4-O-Me-d-GlcAp residues and 2-4 d-Xyl residues. In these acidic sugars, the uronic acid side chains were located on two contiguous d-Xyl residues. These facts indicated that AGXs from sugi and hinoki had a structural unit containing two 4-O-Me-d-GlcAp residues on two contiguous d-Xyl residues as well as AGXs from spruce and larch.  相似文献   
994.
To evaluate windthrow resistance with respect to stem breakage, a nondestructive method for determining the shape of trunk cross sections was developed. In this method, the coordinates of multiple gauge points set on the perimeter of a trunk are calculated by measuring the distances between them. The shape between the gauge points is generated with the use of a profile gauge placed between them. Measurement tests were conducted using profile gauges with lengths of 300 and 900 mm on model specimens with four shape patterns and four different diameters. The accuracy of the estimation was verified by comparing the section modulus calculated for the generated image and for the photograph. The average ratio of section modulus (generated/photo) for all specimens was 0.994, which indicates that the proposed method is highly accurate. The section moduli of hollow trunks can be evaluated using the profile method together with the drill resistance technique on the condition that 26% of the trunk diameter could be drilled without skew.  相似文献   
995.
Wood is a highly sophisticated and multihierarchical material. The nanoscale structures in natural cell walls of red pine, American pine, and white ash specimens were investigated using the small-angle X-ray scattering (SAXS) technique. A tangent-by-tangent method was used to analyze the SAXS data. The results demonstrate that the multihierarchical scatterers in the three specimens can be divided into two dominant components, i.e., a sharp component and a wide component. The sharp component mainly corresponds to the contribution of cellulose microfibrils, and its size is almost unaffected by the water content. However, the wide component includes voids or microcracks and cellulose microfibril aggregates; its size changes, reflecting swelling and water accumulation in the voids or microcracks. Because of the different morphological features of the cell walls, softwood (red pine and American pine) displays different tendencies from hardwood (white ash) in terms of changes in the wide component with water content: the average scatterer size of the wide component has an incremental tendency with the water content in softwood, but it has a descending tendency in hardwood. Fractal analysis further revealed that in white ash the surface of scatterers is coarser and the scatterers form more compact nanostructures than in the two pine woods. All this nanostructural information can be used to explain well the difference of swelling behaviors between the two pines and the white ash.  相似文献   
996.
The dependence of the acidolysis reaction of a C6-C3 dimeric nonphenolic β-O-4 type lignin model compound, 2-(2-methoxyphenoxy)-1-(3,4-dimethoxyphenyl) propane-1,3-diol (veratrylglycerol-β-guaiacyl ether, VG), on the type of acid applied was examined using three different acids [0.2 mol/l HCl, 0.2 mol/l HBr, and 0.1 mol/l (0.2 N) H2SO4 in 82% aqueous 1,4-dioxane at 85°C]. In the HCl system, the major reaction modes of the corresponding benzyl cation-type intermediate (BC), which is produced by protonation of the α-hydroxyl group of VG and successive release of the water molecule, are the abstraction of the β-proton and hydride transfer from the β-to the α-position. The liberation of formaldehyde from the γ-hydroxymethyl group of BC is the predominant reaction mode in the H2SO4 system. Apparently, an unknown reaction mode or modes is operative in the early stage of the HBr system that causes rapid disappearance of VG accompanied by the quantitative formation of 2-methoxyphenol without affording the common counterpart of a Hibbert’s ketone, 1-hydroxy-3-(3,4-dimethoxyphenyl) propan-2-one. The reaction mode in the HBr system changes with the progress of the reaction and is the same as that in the HCl system after the early stage.  相似文献   
997.
To improve its overall performance, fast-growing poplar was modified using the vacuum-pressure-vacuum impregnation method with a urea-formaldehyde resin-sodium montmorillonite intercalation as the modification solution. The results showed that considerable amounts of urea-formaldehyde resin and montmorillonites entered the poplar tracheid, and some entered the microporous wood. These substances formed bonds with the active groups in timber, causing reduced crystallinity in the amorphous region of the poplar, a decreased level of free hydroxyl, and an enhanced association with hydroxyl and ether bonds. The density, dimensional stability, and mechanical properties of poplar were markedly improved. The best results were obtained with 14% sodium montmorillonite and 20% ureaformaldehyde resin: the bending resistance, compressive resistance, and elastic modulus increased by 19.37%, 30.24%, and 50.06%, respectively. With elevated levels of sodium montmorillonite, the impact toughness and wear rate decreased.  相似文献   
998.
To improve the properties of particleboard, boards were produced using a sealed press. With the sealed press, boards were processed under high-temperature and high-pressure steam. This increased the saturation temperature, causing a dramatic rise in temperature inside the board, faster curing of the binder, and a shorter pressing time. The boards were bonded with urea formaldehyde resin, melamine urea formaldehyde resin, or poly(methylene diphenyl diisocyanate) (PMDI). The sealed press improved the internal bond strength and thickness swelling of boards regardless of the binder used during the reduced pressing time. The increased bonding strength improved the board properties, allowing PMDI with a lower resin content to be used for bonding the boards.  相似文献   
999.

Purpose

Rice paddy soils undergo pedogenesis driven by periodic flooding and drainage cycles that lead to accumulation of organic matter and the stratification of nutrients and oxygen in the soil profile. Here, we examined the effects of continuous rice cultivation on microbial community structures, enzyme activities, and chemical properties for paddy soils along a chronosequence representing 0–700 years of rice cropping in China.

Materials and methods

Changes in the abundance and composition of bacterial and fungal communities were characterized at three depths (0–5, 5–10, and 10–20 cm) in relation to organic carbon, total nitrogen, dissolved organic carbon, microbial biomass carbon/nitrogen, and activities of acid phosphatase, invertase, and urease.

Results and discussion

Both soil organic carbon and total nitrogen increased over time at all three depths, while pH generally decreased. Microbial abundance (bacteria and fungi) and invertase and urease activity significantly increased with the duration of rice cultivation, especially in the surface layer. Fungal abundance and acid phosphatase activity declined with depth, whereas bacterial abundance was highest at the 5–10-cm soil depth. Profiles of the microbial community based on PCR-DGGE of 16S rRNA indicated that the composition of fungal communities was strongly influenced by soil depth, whereas soil bacterial community structures were similar throughout the profile.

Conclusions

Soil bioactivity (microbial abundance and soil enzymes) gradually increased with organic carbon and total nitrogen accumulation under prolonged rice cultivation. Microbial activity decreased with depth, and soil microbial communities were stratified with soil depth. The fungal community was more sensitive than the bacterial community to cultivation age and soil depth. However, the mechanism of fungal community succession with rice cultivation needs further research.
  相似文献   
1000.
Invasive exotic plants can modify soil organic matter (SOM) dynamics and other soil properties. We evaluated changes in particulate organic matter (POM) and carbon (C) mineralisation in adjacent plots invaded by Solidago gigantea, Prunus serotina, Heracleum mantegazzianum and Fallopia japonica, and non-invaded control plots on different soils in Belgium. Litter decomposition of S. gigantea and P. serotina was compared to that of the native species Epilobium hirsutum, Betula pendula and Fagus sylvatica. Disregarding the differences in site characteristics (soil texture, parental material and plant species), we argued that the invasion by S. gigantea and P. serotina enhance SOM dynamics by increasing C mineralisation in 2 out of 3 sites invaded by S. gigantea and in 1 out of 3 sites invaded by P. serotina; C in coarse POM (cPOM, 4,000–250 μm) and fine POM (fPOM, 250–50 μm) in 1 site invaded by S. gigantea and C content in total POM (tPOM, 4,000–50 μm) and the organo-mineral fraction (OMF, 0–50 μm) in 1 site invaded by P. serotina. H. mantegazzianum and F. japonica slowed down SOM dynamics by reducing C mineralisation in three out of four sites; C and nitrogen (N) of fPOM in the invaded compared with the non-invaded plots at one site invaded by H. mantegazzianum. However, N content of cPOM (4,000–250 μm) was higher in the invaded sites by F. japonica compared with the non-invaded plots. Our results indicated that the effects of invasion by exotic plant species were not species-specific but site-specific.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号