首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   129篇
  免费   9篇
林业   10篇
农学   3篇
  15篇
综合类   13篇
农作物   6篇
水产渔业   18篇
畜牧兽医   62篇
园艺   6篇
植物保护   5篇
  2023年   4篇
  2021年   2篇
  2020年   8篇
  2019年   6篇
  2018年   7篇
  2017年   6篇
  2016年   5篇
  2015年   1篇
  2014年   7篇
  2013年   3篇
  2012年   6篇
  2011年   11篇
  2010年   6篇
  2009年   10篇
  2008年   6篇
  2007年   13篇
  2006年   5篇
  2005年   7篇
  2004年   5篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  2000年   3篇
  1999年   2篇
  1998年   3篇
  1996年   1篇
  1994年   1篇
  1988年   2篇
  1986年   1篇
排序方式: 共有138条查询结果,搜索用时 15 毫秒
131.
Relationships between CO(2) assimilation at light saturation (A(max)), nitrogen (N) content and weight per unit area (W(A)) were studied in leaves grown with contrasting irradiances (outer canopy versus inner canopy) and N supply rates in field-grown nectarine trees Prunus persica L. Batsch. cv. Fantasia. Both A(max) and N content per unit leaf area (N(A)) were linearly correlated to W(A), but leaves in the high-N treatment had higher N(A) and A(max) for the same value of W(A) than leaves in the low-N treatment. The curvilinear relationship between photosynthesis and total leaf N was independent of treatments, both when expressed per unit leaf area A(maxA) and N(A)) and per unit leaf weight (A(maxW) and N(W)), but the relationship was stronger when data were expressed on a leaf area basis. Both A(maxA) and N(A) were higher for outer canopy leaves than for inner canopy leaves and A(maxW) and N(W) were higher for leaves in the high-N treatment than for leaves in the low-N treatment. The relationship between A(max) and N resulted in a similar photosynthetic nitrogen-use efficiency at light saturation (A(max)NUE) for both N and light treatments. Photosynthetic nitrogen-use efficiency was similar among treatments throughout the whole light response curve of photosynthesis. Leaves developed in shade conditions did not show higher N-use efficiency at low irradiance. At any intercellular CO(2) partial pressure (C(i)), photosynthetic CO(2) response curves were higher for outer canopy leaves and, within each light treatment, were higher for the high-N treatments than for the low-N treatments. Consequently, most of the differences among treatments disappeared when photosynthesis was expressed per unit N. However, slightly higher assimilation rates per unit N were found for outer canopy leaves compared with inner canopy leaves, in both N treatments. Because higher daily irradiance within the canopies of the low-N trees more than compensated for the lower photosynthetic performances of these leaves compared to the leaves of high-N trees, daily carbon gain (and N-use efficiency on a daily assimilation basis) per leaf was higher for the low-N treatment than for the high-N treatment in both outer and inner canopy leaves.  相似文献   
132.
133.
134.
Proximal analysis, amino acid profile, trypsin inhibitor content, hemagglutinin content and HCN generated from cyanogenic glucosides were determined in four wild and three cultivated varieties ofPhaseolus lunatus. All the wild beans showed a higher protein content than the cultivated beans, but no big differences were found in the other nutrients. The essential amino acid percentage was higher in the cultivated beans than in the wild seeds, which was reflected in the PER determination. The most remarkable difference found between wild and cultivated beans was the high concentration of HCN in all wild varieties. The high concentration of protein found in the wild seed could be a false result from the nitrogen provided by the cyanogenic glucosides.  相似文献   
135.

Purpose

In this study, we quantified soil organic carbon (SOC) stocks and analyzed their relationship with biophysical factors and soil properties.

Materials and methods

The study region was Veracruz State, located in the eastern part of Mexico, covering an area of 72,410 km2. A soil database that contains physicochemical analyses of soil horizons such as carbon concentration data was the source of information used in this study. The database consisted of 163 soil profiles representing 464 genetic horizons. Statistical analysis was used to investigate the effect of each factor (climate, altitude, slope) on SOC stock to 0.50 m depth and to assess differences in the distribution of SOC stock in terms of soil depth (0.0–0.20, 0.20–0.40, 0.40–0.60, 0.60–0.80, 0.80–1.0 m) and land use. In order to compute the spatial distribution of SOC stock to 0.50 m depth based on the soil sampling location, the kriging method was used.

Results and discussion

Results indicated that SOC stock (0.50 m depth) ranged between 0.44 and 41.2 kg C m?2. Regression analysis showed that SOC stocks (0.50 m depth) are negatively correlated with temperature (r?=??0.38; P?<?0.001) and positively correlated with altitude (r?=?0.40; P?<?0.001) and slope (r?=?0.40; P?<?0.001). In addition, by multiple regression, temperature combined with precipitation explained more SOC stock variations (r?=?0.43; P?<?0.001) than the regression model with precipitation (r?=?0.13; P?=?0.16) alone. Also, slope combined with temperature and precipitation explained more SOC stock variations (r?=?0.46; P?<?0.001) than the regression model with slope alone. Forest lands, grasslands, and croplands have higher SOC stocks in the 0.0–0.20-m soil layer than in deeper layers. On average, forest lands, grasslands, croplands, and other lands (wetland and dunes) had a SOC stock of 13.6, 14.6, 15.1, and 8.5 kg C m?2 at 1 m depth, respectively. Soil color correlated (?0.25 ≤ r ≤ ?0.89) with SOC content.

Conclusions

Overall, these results indicate the influence of major interactions between biophysical factors and SOC stocks. This research indicated that SOC stock decreased with soil depth, but with slight variations depending on land use. Thus, there remains a need for more SOC data that include an improved distribution of soil sampling points in order to entirely understand the contributions of biophysical factors to SOC stocks in Veracruz State.  相似文献   
136.
We describe the results of extensive monitoring of leatherback turtle (Dermochelys coriacea) nesting in the Gulf of Uraba, Colombia and the Caribbean coast of southern Panama. On 100 km of coastline, we identified three important coastal stretches totalling 18.9 km that hold 98.5-98.7% of nesting activity. We estimated a total number of nesting activities at all sites of 6254 (2006) and 7509 (2007) and that 5689 (90.9%, 2006) and 6470 (86.2%, 2007) resulted in clutch deposition. Our data demonstrate that nesting levels in this region are much higher than had been previously been suggested. The Caribbean coast of Central America (Costa Rica, Panama, and Colombia) constitutes the fourth largest nesting aggregation for this species in the world after the Guianas (French Guiana and Suriname in South America), Gabon (West Africa) and Trinidad (Caribbean). Estimated nest survival showed strong inter-site differences, ranging from 23% to 75% and, if hatchling production is to be augmented, different management strategies will be needed at each site. Perhaps more importantly, our findings highlight that despite the intense conservation interest in this species for several decades, there are still major gaps in status information and there is a need for increased rigor in the extent of spatial coverage of baseline monitoring to effectively inform conservation assessments. We must guard against precise yet spatially limited estimates of small parts of populations leading to an inaccurate picture of overall status.  相似文献   
137.
This paper reports the results of a study conducted in Italy, within the AGFORWARD (2014–2017) project, aimed at promoting innovative agroforestry practices in Europe. Agroforestry offers a means for maintaining food production whilst addressing some of the negative environmental effects of intensive agriculture. This study aims to elicit the positive and negative points of view and perceptions of local stakeholders in Italy in relation to three types of agroforestry systems. The Participatory Research and Network Development was implemented in three workshops conducted in Sardinia, Umbria, and Veneto regions, and applied adopting a common methodological protocol. Qualitative data were obtained using open discussions with stakeholders on key issues, challenges and innovations. Quantitative data were obtained from stakeholders completing questionnaires during the workshops. A statistical analysis was applied to elicit the differences in stakeholders’ positive and negative perceptions in relation to production, management, environment and socio-economy aspects. Although the participants in the study came from different geographical and socioeconomic contexts with varied educational and cultural backgrounds, the different professional groups (farmers, policy-makers and researchers) and the three workshops generally shared similar perceptions of the benefits and constraints. The effects of agroforestry on production and the environment were generally perceived as positive, whilst those related to management were generally negative. The process of bringing the groups together seemed to be an effective means for identifying the key research gaps that need to be addressed in order to promote the uptake and maintenance of agroforestry.  相似文献   
138.
The extrusion process (EP) consists of heat and mechanical treatments under different conditions of moisture, shear, and pressure and rapidly causes structural alterations and changes in the functional properties of the extruded material. The aim of this study was to evaluate the effect of extrusion conditions and optimize the wheat bran extrusion conditions to achieve the greatest content of phenolic compounds and antioxidant activity using response surface methodology. The EP factors evaluated were feed moisture (FM) (25–33.54%) and final extrusion temperature (T) (140–180 °C). The properties evaluated in the extruded material were bound total phenol content (BTPC), total phenolic compounds and antioxidant activity (AOX). Analysis of variance (ANOVA) and response surface methodology were used in the evaluation. The determination coefficients, (FM)2 and (T)2, very significantly affected the BTPC and bound 2,2-diphenyl-1-picrylhydrazyl content (BDPPHC). The optimization was performed by overlaying two contour plots to predict the best combination regions. The optimized extrusion conditions were the following: FM?=?30% and T?=?140 °C, which provided BTPC?=?3547.01 μgGAE/g (predicted: 3589.3 μgGAE/g) and BDPPHC?=?9.5 μmolTE/g (predicted: 10.4 μmolTE/g); and FM?=?30% and T?=?180 °C, which provided BTPC?=?3342.3 μgGAE/g (predicted: 3727.7 μgGAE/g) and BDPPHC?=?9.5 μmolTE/g (predicted: 9.3 μmolTE/g). The EP increased the phenolic compounds and AOX, and enhancement of these properties in wheat bran products could make them functional foods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号