首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   0篇
林业   7篇
农学   1篇
  17篇
综合类   6篇
农作物   1篇
水产渔业   1篇
畜牧兽医   17篇
园艺   1篇
植物保护   6篇
  2021年   1篇
  2019年   2篇
  2017年   1篇
  2013年   3篇
  2012年   6篇
  2011年   7篇
  2009年   3篇
  2008年   10篇
  2007年   3篇
  2006年   6篇
  2005年   1篇
  2003年   2篇
  2002年   1篇
  2000年   1篇
  1997年   1篇
  1996年   2篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1977年   1篇
  1969年   1篇
  1968年   1篇
排序方式: 共有57条查询结果,搜索用时 14 毫秒
31.
32.
33.
Comparative karyological studies on Chinese carps (Ctenopharyngodon idella, Aristichthys nobilis, Hypophthalmichthys molitrix) were carried out to determine the possiblities of hybridization. The diploid chromosome number, the morphological distribution of chromosomes, the arm ratio, the total and relative lengths of chromosomes, the total length of chromosome sets, and the number of arms were determined. Cross-breeding of grass carp and bighead was tested, and resulted in viable progeny. Karyological analyses of the F1 hybrid generation were made. The hybrid proved to be triploid.  相似文献   
34.
When conditions are similar,more water evaporates from forest plantations than herbaceous vegetation,thereby affecting hydrological fluxes and ion transport in the soil.The vertical distribution of CaCO3 and Cl^-ions shifts due to afforestation.The effect of groundwater depth and clay content were studied in the Great Hungarian Plain where forest area has been increasing for decades by analyzing soil and groundwater samples from stands of black locust(Robinia pseudoacacia,11 plots)and poplar(Populus spp.,11 plots).All study sites contained one herbaceous(control)and one or more forested plots.CaCO3 and Cl^-ions accumulated in the soil profile in greater quantities under tree cover than in the controls.The scale of this process largely depended on the species and on soil and ion properties.Under black locust,Cl^-accumulated between 1.3 and 6.3 m,with a maximum difference of 0.3 pCl unit(pCl is Cl^-activity,the negative of the logarithm to base 10 of the concentration of the chloride ion,determined using an ion-selective electrode,it is a dimensionless quantity.),while the difference in CaCO3 accumulation was at most 3.5%in some layers,compared to control plots.This result may be explained by the difference in the mobility of Ca+and Cl^-ions.Different mechanisms were noticeable under poplar plantations due to their higher water uptake:Cl-accumulation was detected below 0.9 m to the groundwater with a maximum difference of 0.5 pCl units,while CaCO3 accumulation was continuous at depths of 2.3–6.8 m with a maximum difference of 8.4%,compared to the controls.With increasing clay content,there was a discernible effect on CaCO3 and Cl-accumulation under black locust,but not observed under poplars.These differences were explained by the differences in water uptake mechanisms and root patterns of the two species and the different mobility of Ca2^+and Cl-ions.  相似文献   
35.
Using data for U.S. metropolitan statistical areas, an earlier study of aggregate local geographic research spillovers generated by universities (Anselin et al.1997) was extended to a sectorally disaggregated level. These findings suggest the existence of significant sectoral variation with respect to local university effects on innovation. Apparent differences were found across sectors with respect to the “mix” of applied local knowledge inputs in general, and the extent to which university research plays a role in innovation in particular. The main conclusion is that local university spillovers seem to be specific to certain industries, such that at the two‐digit SIC level, no university spillover effects are at work in the Drugs and Chemicals (SIC28) and in the Machinery (SIC35) sectors. On the contrary, very strong and significant university research spillovers are evidenced in the Electronics (SIC36) and the Instruments (SIC38) industries. These spillovers extend beyond the boundary of the MSA within a 75‐mile range from the central city.  相似文献   
36.
37.
Both drought and salinity cause nutrient disturbance, albeit for different reasons: a decrease in the diffusion rate of nutrients in the soil and the restricted transpiration rates in plants for drought and extreme soil sodium (Na)/calcium (Ca), Na/potassium (K), and chloride (Cl)/nitrate (NO3) ratios for salinity. The objective of this study was to examine short-term effects of drought and salinity on nutrient disturbance in wheat seedlings. Wheat was grown in a greenhouse in soil under drought and saline conditions for 26 days after sowing. At harvest, shoot biomass and length, and fresh weight and dry weight of the blade and sheath in expanded leaves 3 and 4 and expanding leaf 5 were determined. Mineral elements (K, Ca, magnesium (Mg), phosphorus (P), nitrogen (N), Na, sulphur (S), iron (Fe), zinc (Zn), and manganese (Mn)) in leaf blades and sheaths were also analyzed. At harvest, the reduction in plant height, shoot biomass, and accumulative evapotranspiration under drought was similar to that under salinity as compared with control plants. However, drought decreased the accumulation of all ions in the blade of the youngest leaf 5 compared with the control, whereas there was either an increase or no difference in all ion concentrations under saline conditions. The change in concentration for most ions in the blade and sheath of expanded leaves 3 and 4 varied among control, drought, and salinity plants, which indicated a different competition for nutrients between the sheath and blade of expanded leaves under drought and saline conditions. It can be concluded from this study that ion deficiency might occur in expanding leaves under drought but not saline conditions.  相似文献   
38.
This study examined the environmental and genetic variation in methyl donor contents and compositions of 200 cereal genotypes. Glycine betaine, choline, and trigonelline contents were determined by (1)H NMR, and significant differences were observed between cereal types (G) and across harvesting years and growing locations (E). Glycine betaine was the most abundant methyl donor in all of the 200 lines grown on a single site, and concentrations ranged from 0.43 ± 0.09 mg/g dm in oats to 2.57 ± 0.25 mg/g dm in diploid Einkorn varieties. In bread wheat genotypes there was a 3-fold difference in glycine betaine content. Choline contents, in the same lines, were substantially lower, and mean concentrations ranged from 0.17 mg/g dm in oats to 0.27 mg/g dm in durum wheat. Trigonelline was by far the least abundant of the methyl donors studied. Despite this, however, there were large differences between cereal types. Twenty-six wheat genotypes were grown in additional years at four European locations. The average glycine betaine content was highest in grains grown in Hungary and lowest in those grown in the United Kingdom. Across the six environments, there was a 3.8-fold difference in glycine betaine content. Glycine betaine levels, although moderately heritable (0.36), were found to be the most susceptible to the environmental conditions. Free choline concentrations were less variable across genotypes, but heritability of this component was the lowest of all methyl donor components (0.25) and showed a high G × E interaction. Trigonelline showed the most variation due to genotype. Heritability of this metabolite was the highest (0.59), but given that it is at a very low concentration in wheat, it is probably not attractive to plant breeders.  相似文献   
39.
40.
Within the HEALTHGRAIN diversity screening program, the variation in the content of dietary fiber and components thereof in different types of wheat was studied. The wheat types were winter (131 varieties) and spring (20 varieties) wheats (both Triticum aestivum L., also referred to as common wheats), durum wheat (Triticum durum Desf., 10 varieties), spelt wheat (Triticum spelta L., 5 varieties), einkorn wheat (T. monococcum L., 5 varieties), and emmer wheat (Triticum dicoccum Schubler, 5 varieties). Common wheats contained, on average, the highest level of dietary fiber [11.5-18.3% of dry matter (dm)], whereas einkorn and emmer wheats contained the lowest level (7.2-12.8% of dm). Intermediate levels were measured in durum and spelt wheats (10.7-15.5% of dm). Also, on the basis of the arabinoxylan levels in bran, the different wheat types could be divided this way, with ranges of 12.7-22.1% of dm for common wheats, 6.1-14.4% of dm for einkorn and emmer wheats, and 10.9-13.9% of dm for durum and spelt wheats. On average, bran arabinoxylan made up ca. 29% of the total dietary fiber content of wheat. In contrast to what was the case for bran, the arabinoxylan levels in flour were comparable between the different types of wheat. For wheat, in general, they varied between 1.35 and 2.75% of dm. Einkorn, emmer, and durum wheats contained about half the level of mixed-linkage beta-glucan (0.25-0.45% of dm) present in winter, spring, and spelt wheats (0.50-0.95% of dm). All wheat types had Klason lignin, the levels of which varied from 1.40 to 3.25% of dm. The arabinoxylan contents in bran and the dietary fiber contents in wholemeal were inversely and positively related with bran yield, respectively. Aqueous wholemeal extract viscosity, a measure for the level of soluble dietary fiber, was determined to large extent by the level of water-extractable arabinoxylan. In conclusion, the present study revealed substantial variation in the contents of dietary fiber and constituents thereof between different wheat types and varieties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号