Increasing oxidative stress is intimately involved in the pathogenesis of lung failure. Nuclear factor-erythroid 2 related factor 2 (Nrf2) is a key element in redox homeostasis. Nrf2 regulates antioxidant-associated genes that are often the target of phytochemicals in chemoprevention. This study evaluated the effect of diallyl sulfide (DAS), which is present in garlic, on the expression of antioxidant enzymes in the rat lung and the Nrf2 modulation in MRC-5 lung cells. DAS increased the activities of glutathione S-transferase, glutathione reductase, and catalase as well as the GSH/GSSG ratio compared with the lung of untreated control rats (p < 0.05). The pulmonic superoxide dismutase, glutathione peroxidase, NAD(P)H:quinone oxidoreductase 1, and catalase mRNA levels were also significantly increased (p < 0.05) after DAS treatment. Following DAS treatment, DAS level was measured in the plasma after 7 days of oral administration, and the C(max) value was 15 ± 4.2 μM. The total amount of pulmonic Nrf2 and the nuclear translocation of Nrf2 were elevated in DAS-treated rats, clarifying the effect of DAS on the modulation of antioxidant enzymes. Furthermore, DAS could induce nuclear translocation of Nrf2 via ERK/p38 signaling pathway in lung MRC-5 cells. This study demonstrates that DAS administration can significantly induce the activity of antioxidant enzymes in rat lungs and suggests a possible use for DAS as a dietary preventive agent against oxidative stress-induced lung injury. 相似文献
The effects of water extracts from Cassia tora L. (WECT) treated with different degrees of roasting (unroasted and roasted at 150, 200, and 250 degrees C) on the oxidative damage to deoxyribose, DNA, and DNA base in vitro were investigated. It was found that WECT alone induced a slight strand breaking of DNA. In the presence of Fe(3+)/H(2)O(2), WECT accelerated the strand breaking of DNA at a concentration of 2 microg/mL; however, it decreased with increasing concentrations (>5 microg/mL) of WECT. WECT also accelerated the oxidation of deoxyribose induced by Fe(3+)-EDTA/H(2)O(2) at a concentration of 0.2 mg/mL but inhibited the oxidation of deoxyribose induced by Fe(3+)-EDTA/H(2)O(2)/ascorbic acid. Furthermore, WECT accelerated the oxidation of 2'-deoxyguanosine (2'-dG) to form 8-OH-2'-dG induced by Fe(3+)-EDTA/H(2)O(2). The prooxidant action of WECT on the oxidation of 2'-dG was in the order of unroasted > roasted at 150 degrees C > roasted at 200 degrees C > roasted at 250 degrees C. The decrease in the prooxidant activity of the roasted sample might be due to the reduction in its anthraquinone glycoside content or the formation of antioxidant Maillard reaction products after roasting. Thus, WECT exhibited either a prooxidant or an antioxidant property in the model system that was dependent on the activities of the reducing metal ions, scavenging hydroxyl radical, and chelating ferrous ion. 相似文献
Changes in sorption/bioavailability of two metabolites, imidacloprid-urea {1-[(6-chloro-3-pyridinyl)methyl]-2-imidazolidinone} and imidacloprid-guanidine {1-[(6-chloro-3-pyridinyl)methyl]-4,5-dihydro-1H-imidazol-2-amine} of the insecticide imidacloprid {1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidinimine} with aging in different soils were determined. Soil moisture was adjusted to -33 kPa and 14C- and analytical-grade imidacloprid-urea and imidacloprid-guanidine were added to the soil at a rate of 1.0 mg kg-1. Spiked soils were incubated at 25°C for 8 weeks. Replicate soil samples were periodically extracted successively with 0.01 N CaCl2, acetonitrile, and 1 N HCl. Imidacloprid-urea sorption, as indicated by sorption coefficient values, was highest in the soil with highest organic C content, and increased by an average factor of 2.6 in three soils during the 8-week incubation period. Imidacloprid-guanidine sorption increased by a factor of 2.3 in the same soils. The increase in sorption was the result of a decrease in the metabolite extractable with CaCl2 (solution phase); the amount of metabolite extractable with acetonitrile and HCl (sorbed phase) did not significantly change with incubation time. It appears the increase in sorption was because the rate of degradation in solution and on labile sites was faster than the rate of desorption from the soil particles. It may have also been due to metabolite diffusion to less accessible or stronger binding sites with time. Regardless of the mechanism, these results are further evidence that increases in sorption during pesticide aging should be taken into account during characterization of the sorption process for mathematical models of pesticide degradation and transport. 相似文献
The citrus flavanones hesperidin, hesperetin, and neohesperidin are known to exhibit antioxidant activities and could traverse the blood-brain barrier. H2O2 formation induces cellular oxidative stress associated with neurodegenerative diseases. In this study, protective effects of pretreatments (6 h) with hesperidin, hesperetin, and neohesperidin (0.8, 4, 20, and 50 microM) on H2O2-induced (400 microM, 16 h) neurotoxicity in PC12 cells were evaluated. The results showed that hesperetin, hesperidin, and neohesperidin, at all test concentrations, significantly ( p < 0.05) inhibited the decrease of cell viability (MTT reduction), prevented membrane damage (LDH release), scavenged ROS formation, increased catalase activity, and attenuated the elevation of intracellular free Ca2+, the decrease of mitochondrial membrane potential (except those of 0.8 microM neohesperidin-treated cells) and the increase of caspase-3 activity in H2O2-induced PC12 cells. Meanwhile, hesperidin and hesperetin attenuated decreases of glutathione peroxidase and glutathione reductase activities and decreased DNA damage in H2O2-induced PC12 cells. These results first demonstrate that the citrus flavanones hesperidin, hesperetin, and neohesperidin, even at physiological concentrations, have neuroprotective effects against H2O2-induced cytotoxicity in PC12 cells. These dietary antioxidants are potential candidates for use in the intervention for neurodegenerative diseases. 相似文献
Long chain phenols contained in cashew nut shell liquid (CNSL) are found to have important pharmaceutical applications, such as antitumor, antimicrobial, urease inhibitory and lipoxygenase activities, and also are well known in coating and resin industry. The impact of different extraction methods on CNSL yield, selectivity towards preferable compounds, composition and characteristic of extracts was investigated. Four different methods employed in extracting CNSL from CNS were: supercritical carbon dioxide (SC-CO2) extraction (40 °C, 300 bar, 4 h), subcritical water (SCW) extraction (140 °C, 22 bar, 1 h), soxhlet extraction (solvent boiling point, atmospheric pressure, 30 h), and two-step extraction, which comprises a solvent extraction followed by a SCW extraction. Characteristic of the extracts differed significantly. Methanol and two-step extraction resulted in darker and more turbid extracts, while n-hexane and SC-CO2 extracts were clearer and lighter in color. GC-FID/MS chromatograms showed differences in compositions of the extracts obtained by different methods. Two-step extraction yielded extracts that contain 81.17-82.98% total long chain phenols (around 50% based on dry CNS) with monounsaturated cardanol as the major compound, producing higher amount of total phenols than other methods. SCW extraction showed high selectivity towards monounsaturated cardanol and stigmasterol, while high concentration of monounsaturated anacardic acid and cardol appeared in SC-CO2 extract. 相似文献
A polyoxygenated and halogenated labdane, spongianol (1); a polyoxygenated steroid, 3β,5α,9α-trihydroxy-24S-ethylcholest-7-en-6-one (2); a rare seven-membered lactone B ring, (22E,24S)-ergosta-7,22-dien-3β,5α-diol-6,5-olide (3); and an α,β-unsaturated fatty acid, (Z)-3-methyl-9-oxodec-2-enoic acid (4) as well as five known compounds, 10-hydroxykahukuene B (5), pacifenol (6), dysidamide (7), 7,7,7-trichloro-3-hydroxy-2,2,6-trimethyl-4-(4,4,4-trichloro-3-methyl-1-oxobu-tylamino)-heptanoic acid methyl ester (8), and the primary metabolite 2’-deoxynucleoside thymidine (9), have been isolated from the Red Sea sponge Spongia sp. The stereoisomer of 3 was discovered in Ganoderma resinaceum, and metabolites 5 and 6, isolated previously from red algae, were characterized unprecedentedly in the sponge. Compounds 7 and 8 have not been found before in the genus Spongia. Compounds 1–9 were also assayed for cytotoxicity as well as antibacterial and anti-inflammatory activities. 相似文献
A series of hybrid materials composed of zirconia, silica, and thiazole dyes were synthesized from zirconium npropoxide (ZNP) and tetraethoxysilane (TEOS) using heteroaryl 2-amino-thiazole azo dyes, and prepared via the sol-gel process. The heterocyclic 2-amino-thiazole azo dyes underwent a hydrolysis-condensation reaction with an appropriate proportion of ZNP under a catalyst, using a constant ratio of vinyltriethoxysilane (VTES) and TEOS. The structures of these hybrid materials composed of zirconia/silica/thiazole dyes were characterized using Fourier transform infrared (FT-IR) analysis. The surface morphologies of the polyethylene terephthalate (PET) fabrics were evaluated using scanning electron microscopy (SEM). The SEM images demonstrated the uniform dyeing of the PET fabrics, which confirmed the reaction of the hybrid materials with the PET fabrics. The water contact angle, washing fastness, color uniformity, and warmth retention of the PET fabrics dyed with the hybrid materials composed of the zirconia/silica/thiazole dyes were evaluated. The evaluation results indicated that these fabrics offered enhanced warmth retention properties and good water repellency. 相似文献
An experiment involving 25 experiment stations in the North Central and Southern regions (NCR-42 and S-288, respectively) was conducted to assess the degree of uniformity of diet mixing among stations and to assess the variability among station laboratories in chemical analysis of mixed diets. A fortified corn-soybean meal diet was mixed at each station using a common diet formula (except for vitamin and trace-mineral additions). The diet was calculated to contain 14% crude protein (CP), 0.65% Ca, 0.50% P, and 125 ppm Zn (based on 100 ppm added Zn). After mixing, samples were collected from the initial 5% of feed discharged from the mixer, after 25, 50, and 75% was discharged, and from the final 5% of discharged feed. The five samples were sent to the University of Kentucky, finely ground, and divided into subsamples. Each set of five subsamples from each station was distributed to three randomly selected stations for analysis of CP, Ca, P, and Zn (i.e., each station analyzed five diet sub-samples from three other stations). In addition, two commercial and two station laboratories analyzed composites of the five subsamples from each of the 25 mixed diets. Based on the laboratories that analyzed all diets, means were 13.5, 0.65, and 0.52%, and 115 ppm for CP, Ca, P, and Zn, respectively. Ranges of 11.8 to 14.6% CP, 0.52 to 0.85% Ca, 0.47 to 0.58% P, and 71 to 182 ppm of Zn were found among the 25 diet mixes. The coefficients of variation among the 25 diet samples for CP, Ca, P, and Zn were 4.3, 9.3, 4.1, and 17.4%, and among the 25 laboratories were 3.6, 12.5, 10.7, and 11.1%, respectively. Overall analyses of the five sub samples were, respectively, CP: 13.4, 13.6, 13.4, 13.5, and 13.4% (P < 0.06); Ca: 0.66, 0.67, 0.67, 0.66, and 0.67%; P: 0.50,0.51,0.51,0.50, and 0.50%; and Zn: 115, 116, 112, 113, and 120 ppm (P < 0.001). Diets were not uniformly mixed at all stations (station x sample No. was P < 0.08 for Ca and P < 0.01 for CP, P, and Zn). Among stations, the range of the five samples, expressed as a percentage of the mean and averaged for CP, Ca, P, and Zn, varied from +/- 1.1% (i.e., 98.9 to 101.0%) to +/- 12.9% (84.6 to 110.4%), with an overall average of +/- 5.2%. Neither type nor volume of mixers was related to mixing uniformity. The results suggest that uniformity of diet mixes varies among experiment stations, that some stations miss their targeted levels of nutrients (especially Zn), and that the variability among experiment station laboratories in analysis of dietary Ca, P, and Zn in mixed diets is quite large. 相似文献
Cocoa beans and cocoa products contain considerable amounts of bioactive compounds. Harvesting cocoa fruit too early or too late may have effects on the phenolic and alkaloid concentrations of the cocoa powder. Fermentation, a primary processing used to transform cocoa beans to cocoa powder, may also influence the contents of bioactive compounds. In this study, proanthocyanidins, the major compounds in cocoa polyphenols, caffeine and theobromine of cocoa beans, were evaluated at different maturities at harvest, and with different fermentation durations, with and without the addition of a commercial enzyme, Pectinex® Ultra SP-L. The amounts of proanthocyanidins, caffeine and theobromine, and the antioxidant capacities of the unfermented cocoa beans increased as the fruits matured. The values ranged from 16.12–27.28 g catechin equivalents (CE)/100 g dry weight (DW); 99.66–173.61 mg/100 g DW; 556.39–948.84 mg/100 g DW; 23.23–26.32 mol Trolox equivalents (TE)/100 g DW, respectively. Prolonged fermentation with or without the addition of pectinase, from three to seven days, significantly reduced the amounts of these compounds present. Fermentation using the enzyme significantly reduced the proanthocyanidin content and antioxidant capacity of the cocoa powder, with the overall means decreasing from 8.93–4.93 g CE/100 g DW and from 15.81–12.95 g mol TE/100 g DW, respectively. Two-way ANOVA analyses showed that the proanthocyanidins, caffeine, theobromine contents and the antioxidant capacity of cocoa beans were strongly dependet to their stages of maturity, fermentation methods and fermentation duration.