首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58730篇
  免费   3315篇
  国内免费   37篇
林业   3050篇
农学   2213篇
基础科学   351篇
  7424篇
综合类   6817篇
农作物   2102篇
水产渔业   3192篇
畜牧兽医   32914篇
园艺   724篇
植物保护   3295篇
  2019年   499篇
  2018年   955篇
  2017年   1035篇
  2016年   1007篇
  2015年   867篇
  2014年   1013篇
  2013年   2322篇
  2012年   1805篇
  2011年   2203篇
  2010年   1437篇
  2009年   1368篇
  2008年   2031篇
  2007年   2044篇
  2006年   1935篇
  2005年   1792篇
  2004年   1682篇
  2003年   1667篇
  2002年   1539篇
  2001年   2332篇
  2000年   2186篇
  1999年   1723篇
  1998年   684篇
  1997年   623篇
  1996年   601篇
  1995年   671篇
  1994年   572篇
  1993年   558篇
  1992年   1262篇
  1991年   1397篇
  1990年   1451篇
  1989年   1331篇
  1988年   1243篇
  1987年   1230篇
  1986年   1167篇
  1985年   1104篇
  1984年   917篇
  1983年   723篇
  1982年   524篇
  1979年   792篇
  1978年   616篇
  1977年   470篇
  1976年   524篇
  1975年   502篇
  1974年   624篇
  1973年   605篇
  1972年   633篇
  1971年   601篇
  1970年   588篇
  1969年   537篇
  1967年   497篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
A laboratory study was conducted at the Indian Agricultural Research Institute, New Delhi on a sandy clay loam soil of pH 7.9 and organic C content of 0.34% to study the effect of incorporating Sesbania or Vigna legume residues or wheat straw at 15 and 30t ha?1 on temporal variation in ammoniacal and nitrate‐N in soil under submergence and well drained conditions. Under submergence most mineral N was present as ammoniacal‐N, while under well drained conditions it was present as Nitrate‐N. The content of ammoniacal N in soil was the highest after 30 days of incubation and declined thereafter under submergence. On the other hand under well drained conditions the mineral‐N (mostly nitrate) content in soil at 30 DAI was very little and showed increases only later, reaching the highest level at 90 DAI. Application of wheat straw specially at 301 ha?1 level resulted in immobilization of native soil‐N. These results show that rice which is grown under submergence can be transplanted soon after incorporation of legume residues, but for wheat or other crops which are grown under well drained condition a time interval of 30 days or more needs to be provided before sowing the crop.  相似文献   
992.
993.
994.
Strongly acidic soil (e.g. pH < 5.0) is detrimental to tea productivity and quality. Wheat, rice and peanut biochar produced at low temperature (max 300 °C) and differing in alkalinity content were incorporated into Xuan‐cheng (Ultisol; initial pHsoil/water = 1/2.5 4.12) and Ying‐tan soil (Ultisol; initial pH soil/water = 1/2.5 4.75) at 10 and 20 g/kg (w/w) to quantify their liming effect and evaluate their effectiveness for acidity amelioration of tea garden soils. After a 65‐day incubation at 25 °C, biochar application significantly (< 0.05) increased soil pH and exchangeable cations and reduced Al saturation of both tea soils. Association of H+ ions with biochar and decarboxylation processes was likely to be the main factor neutralizing soil acidity. Further, biochar application reduced acidity production from the N cycle. Significant (< 0.05) increases in exchangeable cations and reductions in exchangeable acidity and Al saturation were observed as the rate of biochar increased, but there were no further effects on soil pH. The lack of change in soil pH at the higher biochar rate may be due to the displacement of exchangeable acidity and the high buffering capacity of biochar, thereby retarding a further liming effect. Hence, a significant linear correlation between reduced exchangeable acidity and alkalinity balance was found in biochar‐amended soils (< 0.05). Low‐temperature biochar of crop residues is suggested as a potential amendment to ameliorate acidic tea garden soils.  相似文献   
995.
Carbonate coatings formed on the lower surfaces of pebble inclusions in the Holocene-Late Pleistocene sediments on the Irkutsk-Cheremkhovo Plain have been studied. The coupled analysis of the carbon isotope composition of the soil organic matter and carbonate coatings has indicated the formation of coatings under conditions of phytocenoses with the predominance of C3 plants. A significant effect of the atmospheric CO2 on the carbon isotope composition in the coatings has been noted, which could be related to their formation under low soil respiration rates. The latter was apparently due to the periodic freezing of the soil, which affected the structure of the coatings and was most manifested in the formation of spherulites in their outer layers. The carbonate coatings consist of two laminae significantly differing in their structure and stable isotope composition, which allows separating two main stages of their formation. The lightening of the carbon isotope composition in the outer (younger) layers of the coatings compared to their inner (older) ones coincides with the increase of the δ18O values, which points to changes of the environmental conditions in the studied area during the formation of the coatings.  相似文献   
996.
Forest management and climate change may have a substantial impact on future soil organic carbon (SOC) stocks at the country scale. Potential SOC in Japanese forest soils was regionally estimated under nine forest managements and a climate change scenario using the CENTURY ecosystem model. Three rotations (30, 50, 100 yr) and three thinning regimes were tested: no‐thinning; 30% of the trees cut in the middle of the rotation (e.g. 15 year in a 30‐yr rotation) and thinned trees all left as litter or slash (ThinLef) and the trees from thinning removed from the forest (ThinRem). A climate change scenario was tested (ca. 3 °C increase in air temperature and 9% increase in precipitation). The model was run at 1 km resolution using climate, vegetation and soil databases. The estimated SOC stock ranged from 1600 to 1830 TgC (from 6800 to 7800 gC/m2), and the SOC stock was largest with the longest rotation and was largest under ThinLef with all three rotations. Despite an increase in net primary production, the SOC stock decreased by 5% under the climate change scenario.  相似文献   
997.
This study focused on a suite of vascular plant species (six herbs and two grasses) common to traditionally managed, species-rich grasslands in Western Norway. We assessed the suitability of two species transfer methods (seed sowing and soil seed bank) for restoration of species-rich grassland on a newly established road verge. We compared the species' frequencies one and three years after they were sown on a naked, newly created road verge with their frequencies in aboveground vegetation and soil seed banks of comparable, local grasslands. Species frequencies in the aboveground vegetation differed significantly from those in the seed banks. Moreover, the frequencies in the seed banks differed from those recorded one year after sowing, and the frequencies in the aboveground vegetation differed from those recorded three years after sowing. Avenula pubescens and Knautia arvensis, found in more than 25% of the aboveground grassland plots, did not germinate from any of the seed bank samples. Festuca rubra, Galium verum, Pimpinella saxifraga and Silene vulgaris were more frequent in the aboveground plots than in the seed bank samples. Pimpinella saxifraga, Galium verum and Lychnis viscaria emerged quite well both from sown seeds and from the seed bank. Avenula pubescens was frequent in the aboveground vegetation, but did not germinate from sown seeds. Six species established well from seeds, and most increased in frequency in the sown plots from the first to the third year. No species was found in the sown plots only, but three years after sowing, three species were more frequent in the sown plots than in the aboveground vegetation of donor grassland plots. Our fine-scale, point-to-point study demonstrates that different restoration methods produce widely differing species composition even when the donor material is identical. We propose that different substrates and a combination of establishment methods (sowing and hay transfer) are needed as supplements to seed banks to re-establish species-rich grassland.  相似文献   
998.
999.
Short paper fiber (SPF), a by-product of the paper mill industry, was cocomposted with broiler litter (BL) to determine decomposition rate and NH3-N loss as functions of C/N ratio and pH of the compost mixes. The SPF generally had a high C/N ratio >200 while the BL, consisting of bedding material (sawdust) and poultry manure, had a low C/N ratio of 10–12. A total of seven series (27 tests) of pilot-scale studies were conducted using two different SPFs mixed with BL. Additives used for pH control were alum (aluminum sulfate), HiClay® Alumina and sulfuric acid. Mixing ratios [SPF/(SPF+BL), kg/kg(dry basis)] used were 0.8 to 0.4. Test conditions were C/N of 17 to 49, pH of 6.6 to 8.3, initial temperatures of ?1 to 22°C, composting temperature of 60°C, water content of 50-55% w.b. and remixing two times per week. Composting temperature was controlled using forced ventilation with a high/low fan setting. Composting trials lasted two weeks. Ammonia loss, O2, CO2, compost temperatures and dry solids loss were measured. Evaluations of ammonia emissions versus initial C/N and pH showed: (1) NH3-N loss decreased as initial C/N increased, even above C/N = 38; (2) NH3-N loss decreased rapidly below pH = 7 and increased rapidly for initial pH above 8. Addition of alum and/or sulfuric acid was found to decrease NH3- N loss while HiClay® Alumina had little or no effect. Results on dry solids loss are not presented in this article.  相似文献   
1000.
Most soybeans grown in North America are genetically modified (GM) to tolerate applications of the broad-spectrum herbicide glyphosate; as a result, glyphosate is now extensively used in soybean cropping systems. Soybean roots form both arbuscular mycorrhizal (AM) and rhizobial symbioses. In addition to individually improving host plant fitness, these symbioses also interact to influence the functioning of each symbiosis, thereby establishing a tripartite symbiosis. The objectives of this study were to (1) estimate the effects of glyphosate on the establishment and functioning of AM and rhizobial symbioses with GM soybean, and (2) to estimate the interdependence of the symbioses in determining the response of each symbiosis to glyphosate. These objectives were addressed in two experiments; the first investigated the importance of the timing of glyphosate application in determining the responses of the symbionts and the second varied the rate of glyphosate application. Glyphosate applied at recommended field rates had no effect on Glomus intraradices or Bradyrhizobium japonicum colonization of soybean roots, or on soybean foliar tissue [P]. N2-fixation was greater for glyphosate-treated soybean plants than for untreated-plants in both experiments, but only when glyphosate was applied at the first trifoliate soybean growth stage. These data deviate from previous studies estimating the effect of glyphosate on the rhizobial symbiosis, some of which observed negative effects on rhizobial colonization and/or N2-fixation. We did observe evidence of the response of one symbiont (stimulation of N2-fixation following glyphosate) being dependent on co-inoculation with the other; however, this interactive response appeared to be contextually dependent as it was not consistent between experiments. Future research needs to consider the role of environmental factors and other biota when evaluating rhizobial responses to herbicide applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号