首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   0篇
  1篇
综合类   30篇
水产渔业   1篇
畜牧兽医   33篇
  2021年   4篇
  2020年   2篇
  2014年   2篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2005年   4篇
  2004年   3篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  2000年   5篇
  1999年   1篇
  1945年   1篇
  1944年   1篇
  1941年   1篇
  1934年   1篇
  1933年   1篇
  1930年   2篇
  1929年   1篇
  1918年   2篇
  1916年   1篇
  1915年   1篇
  1914年   2篇
  1911年   1篇
  1910年   2篇
  1908年   1篇
  1907年   1篇
  1901年   1篇
  1900年   1篇
  1898年   1篇
  1896年   1篇
  1895年   1篇
  1894年   2篇
  1893年   3篇
排序方式: 共有65条查询结果,搜索用时 15 毫秒
11.
12.
Immune system activation begins a host of physiological responses. Infectious agents are recognized by monocytes and macrophages which in turn stimulate cytokine production. It is the hormone-like factors called cytokines that orchestrate the immune response. The classic responses observed with immune system activation and cytokine production include: anorexia, fever, lethargy, recruitment of other immune cells, and phagocytosis. While production of immune system components is known to require some amino acids, increases in amino acid requirements are more than offset by the associated decrease in protein accretion and increased muscle protein degradation that also accompanies immune system activation. However, the biggest impact of cytokine production is a decrease in feed intake. Therefore, as feed intake decreases, the energy needed to drive protein synthesis is also decreased. This suggests that diets should still be formulated on a similar calorie:lysine ratio as those formulated for non-immune challenged pigs. The evidence is sparse or equivocal for increasing nutrient requirements during an immune challenge. Nutritionists and swine producers should resist the pressure to alter the diet, limit feed, or add expensive feed additives during an immune challenge. While immune stimulation does not necessitate changes in diet formulation, when pigs are challenged with non-pathogenic diarrhea there are potential advantages on gut health with the increased use of crystalline amino acids rather than intact protein sources (i.e., soybean meal). This is because reducing crude protein decreases the quantity of fermentable protein entering the large intestine, which lowers post weaning diarrhea. It also lowers the requirement for expensive specialty protein sources or other protein sources such as soybean meal that present immunological challenges to the gut. The objective of this review is two-fold. The first is to discuss immunity by nutrition interactions, or lack thereof, and secondly, to review amino acid re  相似文献   
13.
Immune system activation begins a host of physiological responses. Infectious agents are recognized by monocytes and macrophages which in turn stimulate cytokine production. It is the hormone-like factors called cytokines that orchestrate the immune response. The classic responses observed with immune system activation and cytokine production include: anorexia, fever, lethargy, recruitment of other immune cells, and phagocytosis. While production of immune system components is known to require some amino acids, increases in amino acid requirements are more than offset by the associated decrease in protein accretion and increased muscle protein degradation that also accompanies immune system activation. However, the biggest impact of cytokine production is a decrease in feed intake. Therefore, as feed intake decreases, the energy needed to drive protein synthesis is also decreased. This suggests that diets should still be formulated on a similar calorie:lysine ratio as those formulated for non-immune challenged pigs. The evidence is sparse or equivocal for increasing nutrient requirements during an immune challenge. Nutritionists and swine producers should resist the pressure to alter the diet, limit feed, or add expensive feed additives during an immune challenge. While immune stimulation does not necessitate changes in diet formulation, when pigs are challenged with non-pathogenic diarrhea there are potential advantages on gut health with the increased use of crystalline amino acids rather than intact protein sources (i.e., soybean meal). This is because reducing crude protein decreases the quantity of fermentable protein entering the large intestine, which lowers post weaning diarrhea. It also lowers the requirement for expensive specialty protein sources or other protein sources such as soybean meal that present immunological challenges to the gut. The objective of this review is two-fold. The first is to discuss immunity by nutrition interactions, or lack thereof, and secondly, to review amino acid requirement estimates for nursery pigs.  相似文献   
14.
15.
Because of its requirement for signaling by multiple cytokines, Janus kinase 3 (JAK3) is an excellent target for clinical immunosuppression. We report the development of a specific, orally active inhibitor of JAK3, CP-690,550, that significantly prolonged survival in a murine model of heart transplantation and in cynomolgus monkeys receiving kidney transplants. CP-690,550 treatment was not associated with hypertension, hyperlipidemia, or lymphoproliferative disease. On the basis of these preclinical results, we believe JAK3 blockade by CP-690,550 has potential for therapeutically desirable immunosuppression in human organ transplantation and in other clinical settings.  相似文献   
16.
Two experiments were conducted to determine the effects of crude protein (CP) level in diets containing coarse wheat bran (CWB) with or without pharmacological levels of Zn (provided by zinc oxide: ZnO) on growth performance and fecal DM of nursery pigs. In experiment 1, 360 barrows (Line 200 × 400, DNA, Columbus, NE, initially 5.6 kg) were allotted to 1 of 6 dietary treatments from d 0 to 21 after weaning with 5 pigs per pen and 12 pens per treatment. Treatments included a positive control diet (21% CP) with 3,000 mg/kg Zn in phase 1 and 2,000 mg/kg in phase 2; negative control (21% CP) with 110 mg/kg added Zn, and 4 diets containing 4% CWB and 110 mg/kg added Zn formulated to contain 21%, 19.5%, 18%, or 16.5% CP. The 2 control diets and 21% CP CWB diet contained 1.40% standardized ileal digestible (SID) Lys in phase 1 and 1.35% SID Lys in phase 2, while the 19.5%, 18%, and 16.5% CP diets contained 1.33, 1.25 and 1.20% Lys, respectively, in both phases. Pigs fed the positive control diet containing pharmacological ZnO had increased (P < 0.05) ADG and G:F compared with the negative control and the 21% CP CWB diet. Reducing CP (concurrently with SID Lys) in diets containing CWB decreased ADG and G:F (linear, P = 0.002); however, fecal DM increased (linear, P = 0.005). In experiment 2, two groups of 300 and 350 pigs, initially 7.0 and 6.2 kg, respectively, were used with 5 pigs per pen and 26 pens per treatment. The objective was to determine if adding back essential AA would improve growth performance of pigs fed the low CP diets. All dietary treatments were fed for 13 days, contained 4% CWB, and consisted of: (1) positive control with 2,000 mg/kg of Zn and 21% CP (1.35% SID Lys); (2) no ZnO and 21% CP; and 3 diets with no ZnO formulated to 18% CP and (3) 1.2% SID Lys; (4) 1.35% SID Lys by the addition of feed grade amino acids (AA), and (5) diet 4 with non-essential amino acids (NEAA; Gly and Glu). Pigs fed 21% CP with ZnO had increased (P = 0.001) ADG compared to those fed 18% CP (1.35% SID Lys) with high levels of feed grade amino acids or those fed the reduced SID Lys (1.2%) diet. Overall, G:F was improved (P < 0.001) for pigs fed 21% CP diets and those fed the 18% CP diet with NEAA compared to pigs fed 1.2% SID Lys and pigs fed high levels of feed grade amino acids. Fecal DM was increased for pigs fed the reduced SID Lys diet. In summary, pharmacological levels of Zn improve pig growth performance, but reducing CP (and subsequently SID Lys) decreased nursery pig growth performance.  相似文献   
17.
In Experiment 1, lambs were randomly assigned to 0.25, 1.00, 2.50, 5.00 and 10.00 g/day of dietary ruminally protected L-carnitine (RPLC) and were allowed to adapt for 20 days. Plasma samples were obtained at 0, 120 and 240 min after RPLC feeding. Plasma L-carnitine (LC) concentrations increased (p<0.01) for all levels of RPLC treatment, however, no differences were observed due to level of RPLC or time. Plasma LC concentrations were 27.05 and 57.83 micromol/l for baseline and pooled RPLC treated sheep, respectively. In Experiment 2, lambs were randomly assigned to 0, 0.125, 1.06 and 2.0 g/day of RPLC and were adapted as in Experiment 1. Plasma was collected at 0, 15, 30, 60, 90, 180, 240 and 360 min after oral ammonia challenge (300 mg/kg BW urea). Plasma LC concentrations increased with treatment relative to control (p<0.01). Plasma LC concentrations were 35.7, 44.2, 60.5 and 65.7 micromol/l for the 0, 0.125, 1.06 and 2.0 g/day treatments, respectively. RPLC tended to decrease plasma ammonia at some time points (time x treatment; p=0.10). We conclude that RPLC increased plasma LC concentrations, but had only modest effects on plasma ammonia concentrations and had no effect on plasma urea or glucose concentrations.  相似文献   
18.
Bigeye tuna are of global economic importance and are the primary target species of Hawaii's most valuable commercial fishery. Due to their high commercial value, bigeye tuna are relatively well studied and routinely assessed. Larval and adult bigeye surveys have been conducted for many years and are supported by ongoing research on their physiology and life history. Yet, modeling stock dynamics and estimating future catch rates remain challenging. Here, we show that an appropriately lagged measure of phytoplankton size is a robust predictor of catch rates in Hawaii's bigeye tuna fishery with a forecast window of four years. We present a fishery‐independent tool with the potential to improve stock assessments, aid dynamic fisheries management, and allow Hawaii's commercial longline fishing industry to better plan for the future.  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号