首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   124947篇
  免费   6374篇
  国内免费   74篇
林业   5434篇
农学   3793篇
基础科学   816篇
  13845篇
综合类   24689篇
农作物   4849篇
水产渔业   5485篇
畜牧兽医   63341篇
园艺   1387篇
植物保护   7756篇
  2018年   1391篇
  2017年   1559篇
  2016年   1449篇
  2015年   1244篇
  2014年   1497篇
  2013年   4240篇
  2012年   2941篇
  2011年   3486篇
  2010年   2304篇
  2009年   2314篇
  2008年   3479篇
  2007年   3350篇
  2006年   3164篇
  2005年   3102篇
  2004年   2931篇
  2003年   3156篇
  2002年   2918篇
  2001年   3403篇
  2000年   3334篇
  1999年   2681篇
  1997年   1189篇
  1995年   1325篇
  1994年   1199篇
  1993年   1177篇
  1992年   2505篇
  1991年   2692篇
  1990年   2713篇
  1989年   2766篇
  1988年   2597篇
  1987年   2549篇
  1986年   2638篇
  1985年   2556篇
  1984年   2163篇
  1983年   1879篇
  1982年   1338篇
  1981年   1214篇
  1979年   2069篇
  1978年   1643篇
  1977年   1515篇
  1976年   1408篇
  1975年   1551篇
  1974年   1968篇
  1973年   1935篇
  1972年   1944篇
  1971年   1859篇
  1970年   1769篇
  1969年   1617篇
  1968年   1339篇
  1967年   1571篇
  1966年   1270篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
The molecular basis by which human breast milk supports the development of a protective intestinal microbiome in infants is unknown. After lactose and lipids, human milk oligosaccharides (HMOs) are quantitatively the third largest and most diverse component of breast milk. In this work, glycomic profiling of HMO consumption by bifidobacteria using Fourier transform ion cyclotron resonance mass spectrometry reveals that one species, Bifidobacterium longum biovar infantis ATCC 15697, an isolate from the infant gut, preferentially consumes small mass oligosaccharides, representing 63.9% of the total HMOs available. These HMOs were detected in human breast milk at the onset and constantly through the first month of lactation by use of high performance liquid chromatography-chip time-of-flight mass spectrometry. Further characterization revealed that strain ATCC 15697 possesses both fucosidase and sialidase activities not present in the other tested strains. This work provides evidence that these small mass HMOs are selectively metabolized by select bifidobacterial strains and represent a potential new class of bioactive molecules functioning as prebiotics to facilitate a protective gut colonization in breast-fed newborns.  相似文献   
942.
Colonisation by root endophytes can be beneficial to plants growing on acid, nutrient-poor soils. Arbuscular mycorrhizal (AM) fungi can supply herbs with nutrients and may give protection against aluminium toxicity. Two other root colonising fungi, fine endophytes (FE) and dark septate fungi (DSE), are less well known but are potentially of benefit to their host plant. AM fungi are the most prevalent symbionts in herbs at neutral to acidic soil pH. At extremely low pH, fungal growth can be limited and AM colonisation is usually rare. Fine and dark septate endophytes, on the other hand, have been observed more often under these conditions. In order to relate endophyte colonisation to a gradient in soil pH, we investigated root colonisation by AM, FE and DSE in Maianthemum bifolium, Galium odoratum, Mercurialis perennis and Stellaria nemorum, from a range of acidic beech forests. With decreasing pH, colonisation by AM decreased, whereas the other two endophytes increased. AM and FE colonisation were inversely correlated in Maianthemum bifolium. We compared changes in root colonisation with those in chemical composition of soil and leaf samples and found a positive correlation between leaf magnesium concentrations and the presence of DSE in Galium odoratum. Aluminium concentration in Maianthemum bifolium tended to be lower when FE colonisation was high, suggesting a possible role for the fungi in plant protection against Al. We suggest that FE and DSE may replace AM fungi in herbaceous vegetation at extremely low pH, counteracting some of the negative effects of high soil acidity on plants.  相似文献   
943.
The adsorption and binding of plasmid p34S DNA on four different colloidal fractions from a Brown soil and clay minerals in the presence of various Ca2+ concentrations, the ability of bound DNA to transform competent cells of CaCl2-treated Escherichia coli, and the resistance of bound DNA to degradation by DNase I were studied. DNA adsorption on soil colloids and clay minerals was promoted in the presence of Ca2+. Kaolinite exhibited the highest adsorption affinity for DNA among the examined soil colloids and clay minerals. In comparison with organo-mineral complexes (organic clays) and fine clays (<0.2 μm), DNA was tightly adsorbed by H2O2-treated clays (inorganic clays) and coarse clays (0.2-2 μm). The transformation efficiency of bound DNA increased with increasing concentrations of Ca2+ at which soil colloid or clay mineral-DNA complexes were formed. DNA bound by kaolinite showed the lowest transformation efficiency, and especially no transformants were observed with kaolinite-DNA complex prepared at 5-100 mM Ca2+. Compared to organic clays and fine clays, DNA bound on inorganic clays and coarse clays showed a lower capacity to transform E. coli at different Ca2+ concentrations. The presence of soil colloids and minerals provided protection to DNA against degradation by DNase I. Montmorillonite, organic clays and fine clays showed stronger protective effects for DNA than inorganic clays and coarse clays. The protection mechanisms as well as the differences in transforming efficiency of plasmid DNA molecules bound on various soil colloidal particles are discussed. The information obtained in this study is of fundamental significance for the understanding of the horizontal dissemination of recombinant DNA and the fate of extracellular DNA in soil environments.  相似文献   
944.
An experiment was performed to examine the chemical and biological effects on high clay sodic subsoil following the incorporation and incubation with organic amendments. The main treatments consisted of amendments with wheat shoots, lucerne pellets and peat, and these were compared to gypsum addition. Additional treatments were residues of chickpea and canola, chicken manure and sawdust. All materials were finely ground and added to crushed and sieved soil at the rate of 1% by weight. Wheat, canola and chickpea residues and chicken manure resulted in modest reductions in soil sodicity. Carbon and N mineralization were related to the soluble C/total N ratio in the amendment. The initial mineralization of wheat amendment was rapid due to its soluble C content, but then slowed to have the lowest loss, of around one third of added C, of all the plant residues after 174 days. In comparison, lucerne-amended soil increased total N and lost almost half of its C after the 174-day incubation. The canola stubble amendment showed the highest carbon loss, losing 64% of its added C. The addition of gypsum resulted in high soil electrical conductivity which suppressed respiration, compared to the control soil, indicating a detrimental effect on microbial activity due to the high electrolyte concentration in the soil. The peat amendment, with a low-soluble C content, showed a similar respiration rate to the control soil, confirming that a source of soluble C is important for the initiation of rapid biological activity. Soil pH was significantly increased (by 0.6 of a pH unit) with addition of chicken manure, and still remained higher than control soil after 174 days of incubation. Lucerne was the only plant residue to increase soil pH, with the effect being sustained for 56 days. The study demonstrated how some organic amendments can improve chemical fertility and biological activity in high clay sodic subsoil, and at the same time contribute, after 25 weeks incubation, to an increase in carbon content.  相似文献   
945.
Heavy metal phytoextraction is a soil remediation technique, which makes use of plants in removing contamination from soil. The plants must thus be tolerant to heavy metals, adaptable to soil and climate characteristics, and able to take up large amounts of heavy metals. Most of the high biomass productive plants such as, maize, oat and sunflower are plants, which do not grow in cold climates or need intensive care. In this study three “weed” plants, Borago officinalis; Sinapis alba L. and Phacelia boratus were investigated for their ability to tolerate and accumulate high amounts of Cd and Pb. Pot experiments were performed with soil containing Cd and Pb at concentrations of up to 180 mg kg?1 and 2,400 mg kg?1 respectively. All three plants showed high levels of tolerance. Borago officinalis; and Sinapis alba L. accumulated 109 mg kg?1 and 123 mg kg?1 Cd, respectively at the highest Cd spiked soil concentration. Phacelia boratus reached a Cd concentration of 42 mg kg?1 at a Cd soil concentration of 100 mg kg?1. In the case of Pb, B. officinalis and S. alba L. displayed Pb concentrations of 25 mg kg?1 and 29 mg kg?1, respectively at the highest Pb spiked soil concentration. Although the Pb uptake in P. boratus reached up to 57 mg kg?1 at a Pb spiked soil concentration of 1,200 mg kg?1, it is not suitable for phytoextraction because of its too low biomass.  相似文献   
946.
In order to understand the efficiency of residue-N use and to estimate the minimum input required to obtain a reasonable level of crop response, it is important to quantify the fate of the applied organic-N. The recovery of N from 15N-labelled Crotalaria juncea was followed in the soil and the succeeding maize crop. Apparent N recovery (ANR) by maize from unlabelled Crotalaria juncea, Crotalaria retusa, Calopogonium mucunoides, Mucuna pruriens and mineral fertilizer at three locations were also evaluated. The maize crop recovered 4.7% and 7.3% of the 15N-labelled C. juncea-N at 42 days after sowing (DAS) and at final harvest, respectively. The corresponding 15N recovery from the soil was 92.4% and 58.5%. The highest mean ANR of 57.4% was with mineral fertilizer, whereas the mean ANR of 14.3% from C. retusa was the lowest. A large pool substitution and added-N interaction effect was observed when comparing N recovery from the labelled and unlabelled C. juncea. The amount of residue-N accounted for by the isotope dilution method at 42 DAS was 97.1% and at final harvest 65.8%. The large residue-N recovery in the soil organic-N pool explains the residual effect usually observed with organic residue application.  相似文献   
947.
The development and use of genetically modified plants (GMPs) has been a topic of considerable public debate in recent years. GMPs hold great promise for improving agricultural output, but the potential for unwanted effects of GMP use is still not fully understood. The majority of studies addressing potential risks of GMP cultivation have addressed only aboveground effects. However, recent methodological advances in soil microbial ecology have allowed research focus to move underground to try to gain knowledge of GMP-driven effects on the microbial communities and processes in soil that are essential to key terrestrial ecosystem functions. This review gives an overview of the research performed to date on this timely topic, highlighting a number of case studies. Although such research has advanced our understanding of this topic, a number of knowledge gaps still prevent full interpretation of results, as highlighted by the failure of most studies to assign a definitively negative, positive or neutral effect to GMP introduction. Based upon our accumulating, yet incomplete, understanding of soil microbes and processes, we propose a synthesis for the case-by-case study of GMP effects, incorporating assessment of the potential plant/ecosystem interactions, accessible and relevant indicators, and tests for unforeseen effects.  相似文献   
948.
949.
Crude vegetable oils are usually oxidatively more stable than the corresponding refined oils. Tocopherols, phospholipids (PL), phytosterols, and phenols are the most important natural antioxidants in crude oils. Processing of vegetable oils, moreover, could induce the formation of antioxidants. Black cumin (Nigella sativa L.), coriander (Coriandrum sativum L.), and niger (Guizotia abyssinica Cass.) crude seed oils were extracted with n-hexane and the oils were further fractionated into neutral lipids (NL), glycolipids (GL), and PL. Crude oils and their fractions were investigated for their radical scavenging activity (RSA) toward the stable galvinoxyl radical by electron spin resonance (ESR) spectrometry and toward 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical by spectrophotometric method. Coriander seed oil and its fractions exhibited the strongest RSA compared to black cumin and niger seed oils. The data correlated well with the total content of polyunsaturated fatty acids, unsaponifiables, and PL, as well as the initial peroxide values of crude oils. In overall ranking, RSA of oil fractions showed similar patterns wherein the PL exhibited greater activity to scavenge both free radicals followed by GL and NL, respectively. The positive relationship observed between the RSA of crude oils and their color intensity suggests the Maillard reaction products may have contributed to the RSA of seed oils and their polar fractions. The results demonstrate the importance of minor components in crude seed oils on their oxidative stability, which will reflect on their food value and shelf life. As part of the effort to assess the potential of these seed oils, the information is also of importance in processing and utilizing the crude oils and their byproducts.  相似文献   
950.
To assess PAH contamination pastures, grass and soil samples have been collected from 10 m (d1), 50 m (d2), and 150 m (d3) perpendicular to a French highway (70,000 vehicles per day) and at a control site in a rural area away from nearby contaminating sources. Total PAH concentration ranges from 767 ng/g dry weight to 3989 ng/g dry weight, according to the matrix and the distance from the highway. Distance is not a significant factor for PAH deposition on grass, while in soil it has an effect between d1 and d2 or d3. The total PAH concentration in highway samples is 8 times higher than in control site samples for grass and 7 to 4 times higher for soil. Fluoranthene, pyrene, and phenanthrene are the major PAHs in grass samples at the control site and the highway, but the concentrations are about 5 times higher near the highway. In soil samples collected near the highway, the values of concentrations between all compounds are not statistically different. PAH deposition on grass is linked to the physicochemical properties of the compounds, which lead to a specific distribution of each molecule (according to their volatility and the number of aromatic rings) while no specific behavior is revealed in soil.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号