首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   1篇
林业   8篇
基础科学   4篇
  15篇
综合类   1篇
农作物   5篇
畜牧兽医   1篇
园艺   1篇
  2020年   1篇
  2015年   1篇
  2013年   1篇
  2011年   6篇
  2010年   2篇
  2008年   4篇
  2007年   2篇
  2005年   2篇
  2004年   2篇
  2002年   1篇
  2001年   2篇
  2000年   6篇
  1998年   4篇
  1995年   1篇
排序方式: 共有35条查询结果,搜索用时 336 毫秒
21.
22.
Smallholder farmers in sub-Saharan Africa are confronted by low productivity and limited investment capacity in nutrient inputs. Integrated soil fertility management (ISFM) aims at increased productivity through the combined use of improved germplasm, judicious fertilizer application and organic matter management, adapted to the local farming conditions. We hypothesize that the application of these different ISFM components can result in significant increases in productivity and economic benefits of cassava–legume intercropping systems. Participatory demonstration trials were conducted in the highlands of Sud-Kivu, DR Congo with 12 farmer groups during 3 seasons. Treatments included the farmers’ common practice (local common bean and cassava varieties, seed broadcast and manure addition) and sequentially added ISFM components: improved bean and cassava germplasm, modified crop arrangements, compound NPK fertilizer application and alternative legume species (groundnut or soybean). The use of improved germplasm did not result in yield increases without simultaneous implementation of other ISFM components. Modifying the crop arrangement by planting cassava at 2 m between rows and 0.5 m within the row, intercropped with four legume lines, increased bean yields during the first season and permits a second bean intercrop, which can increase total legume production by up to 1 t ha−1 and result in an additional revenue of almost 1000 USD ha−1. Crop arrangement or a second legume intercrop did not affect cassava storage root yields. Fertilizer application increased both legume and cassava yield, and net revenue by 400–700 USD ha−1 with a marginal rate of return of 1.6–2.7. Replacing the common bean intercrop by groundnut increased net revenue by 200–400 USD ha−1 partly because of the higher market value of the grains, but mostly due to a positive effect on cassava storage root yield. Soybean affected cassava yields negatively because of its high biomass production and long maturity period; modifications are needed to integrate a soybean intercrop into the system. The findings demonstrate the large potential of ISFM to increase productivity in cassava–legume systems in the Central-African highlands. Benefits were, however, not observed in all study sites. In poor soils, productivity increases were variable or absent, and soil amendments are required. A better understanding of the conditions under which positive effects occur can enable better targeting and local adaptation of the technologies.  相似文献   
23.
Striga hermonthica (Delile) Benth., stemborers, and declining soil fertility are serious threats to sustainable food production in the Lake Victoria zone of Kenya. To address these constraints, promising integrated crop management technologies were evaluated, using a multi-locational design in four sub-locations in Siaya and Vihiga district (western Kenya) for six cropping seasons. Technologies evaluated consisted of the traditional maize (Zea mays L.) – bean (Phaseolus vulgaris L.) intercrop, maize – Desmodium (Desmodium uncinatum (Jacq.) DC.) push–pull intercrop, Crotalaria (Crotalaria ochroleuca G. Don) – maize rotation, and soybean (Glycine max (L.) Merr) – maize rotation. Within each of these systems, imazapyr-coated herbicide-resistant maize (IR-maize) and fertilizer were super-imposed as sub-plot factors. The push–pull system was observed to significantly reduce Striga emergence and stemborer damage from the second season onwards. IR-maize reduced and delayed Striga emergence from the first cropping season. Differences in Striga emergence and stemborer damage between the other systems were not significantly different. After five cropping seasons, the Striga seedbank was significantly higher in the maize-bean intercrop system than in the push–pull system under both maize varieties while the rotational systems had intermediate values not different from the day zero values. Under IR-maize, the Striga seedbank was significantly lower than under local maize for all cropping systems. Maize yields varied between seasons, districts, and cropping systems. Yields in the push–pull system were higher than in the maize-bean intercrop after two seasons and in the absence of mid-season drought stress. Both maize and soybean responded significantly to fertilizer application for both districts and for most seasons. The various interventions did not substantially affect various soil fertility-related parameters after five seasons. In the short term, IR-maize integrated in a push–pull system is the most promising option to reduce Striga while the rotational systems may need a longer timeframe to reduce the Striga seedbank. Finally, farmer-led evaluation of the various technologies will determine which of those is really most acceptable under the prevailing farming conditions.  相似文献   
24.
The role of residue characteristics in enhancing the availability of P was investigated in a greenhouse study using two soils from the northern Guinea savanna (NGS) and four from the derived savanna (DS) zones of the West African moist savanna. Eight organic residues of varying C-to-P ratio were used and maize ( Zea mays) was grown for 7 weeks. The effect of the organic residues on P availability (measured as resin P and maize P accumulation) differed among the soils. On average, the increase in resin P, calculated as {[(soil+residue)–control]/(control)×100}, was between 8% (Davié, DS) and 355% (Danayamaka, NGS). Maize P accumulation was increased by ca. 11% in Davié and Niaouli (DS) soils and 600% in Danayamaka soil. The increase in maize total dry matter yield (DMY) ranged from 2% to 649%. Residues with C-to-P ratio >200 produced lower DMY than those with lower ratios. Residue organic P (Po) extractable with 0.2 N H2SO4 (acid-Po) accounted for 92% ( P =0.0001) of the variation in DMY in a step-wise regression with residue parameters as independent variables and mean DMY as the dependent variable. The residue Po extractable with 0.5 M NaHCO3 (HCO3-Po) correlated significantly with DMY in Danayamaka and Davié soils, and with P accumulation in Danayamaka soil. The relationships between the residue Po and DMY might imply that Po fractions in decomposing residues contribute to P availability. However, the suitability of using the Po content of organic residues to predict their agronomic value with respect to P nutrition needs further evaluation.  相似文献   
25.
African farming systems are highly heterogeneous: between agroecological and socioeconomic environments, in the wide variability in farmers’ resource endowments and in farm management. This means that single solutions (or ‘silver bullets’) for improving farm productivity do not exist. Yet to date few approaches to understand constraints and explore options for change have tackled the bewildering complexity of African farming systems. In this paper we describe the Nutrient Use in Animal and Cropping systems - Efficiencies and Scales (NUANCES) framework. NUANCES offers a structured approach to unravel and understand the complexity of African farming to identify what we term ‘best-fit’ technologies - technologies targeted to specific types of farmers and to specific niches within their farms. The NUANCES framework is not ‘just another computer model’! We combine the tools of systems analysis and experimentation, detailed field observations and surveys, incorporate expert knowledge (local knowledge and results of research), generate databases, and apply simulation models to analyse performance of farms, and the impacts of introducing new technologies. We have analysed and described complexity of farming systems, their external drivers and some of the mechanisms that result in (in)efficient use of scarce resources. Studying sites across sub-Saharan Africa has provided insights in the trajectories of change in farming systems in response to population growth, economic conditions and climate variability (cycles of drier and wetter years) and climate change. In regions where human population is dense and land scarce, farm typologies have proven useful to target technologies between farmers of different production objectives and resource endowment (notably in terms of land, labour and capacity for investment). In such regions we could categorise types of fields on the basis of their responsiveness to soil improving technologies along soil fertility gradients, relying on local indicators to differentiate those that may be managed through ‘maintenance fertilization’ from fields that are highly-responsive to fertilizers and fields that require rehabilitation before yields can improved. Where human population pressure on the land is less intense, farm and field types are harder to discern, without clear patterns. Nutrient cycling through livestock is in principle not efficient for increasing food production due to increased nutrient losses, but is attractive for farmers due to the multiple functions of livestock. We identified trade-offs between income generation, soil conservation and community agreements through optimising concurrent objectives at farm and village levels. These examples show that future analyses must focus at farm and farming system level and not at the level of individual fields to achieve appropriate targeting of technologies - both between locations and between farms at any given location. The approach for integrated assessment described here can be used ex ante to explore the potential of best-fit technologies and the ways they can be best combined at farm level. The dynamic and integrated nature of the framework allows the impact of changes in external drivers such as climate change or development policy to be analysed. Fundamental questions for integrated analysis relate to the site-specific knowledge and the simplification of processes required to integrate and move from one level to the next.  相似文献   
26.
The moist savanna of West-Africa is characterized by a wide range of climates and soil types. The impact of the biophysical environment on hedgerow N uptake, wood production and maize grain yield was assessed for three years in three alley cropping trials with a selected number of hedgerow species in Glidji (Southern Togo), Amoutchou (Central Togo), and Sarakawa (Northern Togo). Senna siamea hedgerows accumulated significantly more N in the first pruning in Glidji (129−138 kg N ha−1) and Sarakawa (102−185 kg N ha−1) than in Amoutchou (17–26 kg N ha−1). This difference in N uptake was attributed to the infertile subsoil in Amoutchou, which was sandy up to 1 m and had a shallow groundwater-table. The amount of N accumulated in the Gliricidia sepium biomass varied between 38 kg N ha−1 in Glidji and 142 kg N ha−1 in Amoutchou. Averaged over all species and sites, 9 to 29% and 9 to 39% of the annual N accumulation in the hedgerow biomass is incorporated in the second, respectively third pruning. The Gliricidia trees produced between 12 and 26 ton fresh matter ha−1 of wood and the Senna trees between 4 and 38 ton fresh matter ha−1. Maize grain yield in Glidji was not affected by treatments (3196 kg ha−1, on average). In Amoutchou, the highest grain production was observed in the Gliricidia treatment (2774 kg ha−1 vs 1007 kg ha−1 in the control), while in Sarakawa, the Gliricidia (3786 kg ha−1) and Senna (3842 kg ha−1) plots produced a greater grain yield than the control plots (2123 kg ha−1). Maize yield increase in the alley cropping systems relative to the control plots was related to the soil total N content. Top and sub-soil characteristics were shown to be an important modifier of the functioning of alley cropping systems and should be taken into account when deciding on whether to use alley cropping and when selecting the hedgerow species. This revised version was published online in June 2006 with corrections to the Cover Date. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
27.
The potential of alley cropping systems supplied with a limited amount of fertilizer to restore crop productivity on a degraded site and to maintain crop productivity on a recently cleared, non-degraded site on ‘terre de barre‘ soils in Southern Bénin was investigated from 1994 to 1996. Leucaena leucocephala, Senna siamea and Gliricidia sepium were used as hedgerow species. Maize yields of the no-tree control plots dropped from the initial (1990) 401 kg ha−1 and 2181 kg ha−1 on the degraded and non-degraded sites, respectively, to 109 kg ha−1 and 1346 kg ha−1 in 1996, even with application of a minimal amount of mineral fertilizer. The alley cropping systems produced on average (mean of three treatments and three years) 107% more grain than the initial 1990 values on the degraded site and 11% less grain than the initial 1990 values on the non-degraded site. Especially the Senna and to a lesser degree the Leucaena treatment yielded consistently more grain than the control. The Senna trees contained a larger amount of N and produced more wood during the first pruning on the degraded site (155 kg N ha−1 and 14.0 ton fresh wood ha−1) than on the non-degraded site (49 kg N ha−1 and 6.6 ton fresh wood ha−1) most likely because of differences in subsoil fertility, as indicated by the higher clay, exchangeable bases, and N content between 60 and 125 cm cm. N accumulation and wood production by the Leucaena and Gliricidia trees was similar in both sites (82 and 36 kg N ha−1 and 4.6 and 9.3 ton fresh wood ha−1, respectively). When a limited amount of fertilizer is available, Senna appears to be the best choice as hedgerow species on sites with a relatively fertile subsoil. For other soils, a N2-fixing species may be a better choice. This revised version was published online in June 2006 with corrections to the Cover Date. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
28.
 Populations of plant parasitic nematodes and their effects on symbiotic nitrogen (N) fixation in herbaceous legumes and on some selected characteristics of other plant species associated with such cover crops were studied. Two legume species [mucuna, Mucuna pruriens (L) DC. var. utilis (Wright) Bruck and lablab, Lablab purpureus L. Sweet], one grass/weed species [imperata, Imperata cylindrica (L.) Rauschel] and a cereal (maize, Zea mays L.) were used. There were three soil treatments (fumigation, fumigation plus inoculation with Meloidogyne species, and an untreated control). Plant parasitic nematode populations in soil, roots and nodules were determined at 4, 8 and 12 weeks after planting. The response of the phytoparasitic nematodes to soil treatments varied according to the plant species present. The predominant nematodes in soils, roots and nodules of legumes were of the genus Meloidogyne, whereas other genera of parasitic nematodes dominated the fauna in soils and roots of maize and imperata. Biomass yield of mucuna was not significantly affected by either Meloidogyne spp. or the other genera of phytoparasitic nematodes. In contrast, the dry matter yield of lablab measured at 12 weeks was reduced by 16% in inoculated compared with fumigated soils. Similarly, the biomass yields of maize and imperata were reduced by 10% and 29%, respectively, in unfumigated rather than fumigated soils. The amounts of N accumulated in mucuna, maize and imperata were not significantly affected by the two groups of plant parasitic nematodes. However, at 12 weeks, lablab grown on inoculated soils accumulated only 69% of the N found in plants grown on fumigated soils. Inoculation of soil with Meloidogyne spp. significantly increased the number of nodules on lablab roots compared with the non-inoculated treatments, whereas nodulation in mucuna was not affected by soil treatment. After 12 weeks, the quantity of N2 derived from symbiotic fixation in mucuna was not significantly affected by soil treatments whereas the amount of fixed N in lablab was 32% lower in inoculated than in fumigated soils. Possible mechanisms for the non-suppressive effect of plant parasitic nematodes on mucuna are discussed. Received: 12 March 1999  相似文献   
29.
 The fate of 15N-labeled plant residues from different cover-cropping systems and labeled inorganic N fertilizer in the organic, soil mineral, microbial biomass and soil organic matter (SOM) particle-size fractions was investigated in a sandy Lixisol. Plant residues were from mucuna (legume), lablab (legume), imperata (grass), maize (cereal) and mixtures of mucuna or lablab with imperata or maize, applied as a surface mulch. Inorganic N fertilizer was applied as 15N-(NH4)2SO4 at two rates (21 and 42 mg N kg–1 soil). Total N release from mucuna or lablab residues was 2–3 times higher than from the other residues, whereas imperata immobilized N throughout the study period. In contrast, 15N was mineralized from all the plant residues irrespective of the mineralization–immobilization pattern observed for total N. After 168 days, 69% of soil mineral N in mucuna- or lablab-mulched soils was derived from the added residues, representing 4–8% of residue N, whereas 9–30% of inorganic N was derived from imperata, maize and the mixed residues. At the end of the study, 4–19% of microbial biomass N was derived from the added residue/fertilizer-N, accounting for 1–3% of added residue-N. Averaged across treatments, particulate SOM fractions accounted for less than 1% of the total soil by weight but contained 20% of total soil C and 8% of soil N. Soils amended with mucuna or lablab incorporated more N in the 250–2000 μm SOM pool, whereas soil amended with imperata or the mixed residues incorporated similar proportions of labeled N in the 250–2000 μm and 53–250 μm fractions. In contrast, in soils receiving the maize or inorganic fertilizer-N treatments, higher proportions of labeled N were incorporated into the 53–250 μm than the 250–2000 μm fractions. The relationship between these differences in residue/fertilizer-N partitioning into different SOM particle-size fractions and soil productivity is discussed. Received: 12 March 1999  相似文献   
30.
 The impact of land use (unfertilized continuous maize cropping, unfertilized and fertilized alley cropping with maize, Gliricidia sepium tree fallow, natural fallow) on the soil organic matter (SOM) status and general soil fertility characteristics were investigated for a series of soils representative for the West African moist savanna zone. Three soils from the humid forest zone were also included. In an associated pot experiment, relationships between maize N and P uptake and SOM and general soil characteristics were developed. Soils under natural fallow contained the highest amount of organic C (1.72%), total N (0.158%), and had the highest effective cation exchange capacity (ECEC) [8.9 mEq 100 g–1 dry soil], while the Olsen P content was highest in the fertilized alley cropping plots (13.7 mg kg–1) and lowest under natural fallow (6.3 mg kg–1). The N concentration of the particulate organic matter (POM) was highest in the unfertilized alley cropping plots (2.4%), while the total POM N content was highest under natural fallow (370 mg N kg–1) and lowest in continuously cropped plots (107 mg N kg–1). After addition of all nutrients except N, a highly significant linear relationship (R 2=0.91) was observed between the total N uptake in the shoots and roots of 7-week-old maize and the POM N content for the savanna soils. POM in the humid forest soils was presumably protected from decomposition due to its higher silt and clay content. After addition of all nutrients except P, the total maize P uptake was linearly related to the Olsen P content. R 2 increased from 0.56 to 0.67 in a multiple linear regression analysis including the Olsen P content and clay content (which explained 11% of the variation in P uptake). Both the SOM status and N availability were shown to be improved in land-use systems with organic matter additions, while only the addition of P fertilizer could improve P availability. Received: 9 April 1999  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号