首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   4篇
林业   13篇
农学   2篇
  74篇
综合类   26篇
农作物   10篇
畜牧兽医   30篇
园艺   3篇
植物保护   16篇
  2023年   1篇
  2022年   3篇
  2021年   5篇
  2020年   4篇
  2019年   4篇
  2017年   2篇
  2016年   2篇
  2015年   5篇
  2014年   10篇
  2013年   9篇
  2012年   10篇
  2011年   17篇
  2010年   6篇
  2009年   6篇
  2008年   10篇
  2007年   13篇
  2006年   5篇
  2005年   11篇
  2004年   6篇
  2003年   4篇
  2002年   7篇
  2001年   4篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1995年   2篇
  1994年   2篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1978年   4篇
  1977年   2篇
  1973年   2篇
  1969年   1篇
  1963年   1篇
  1959年   1篇
排序方式: 共有174条查询结果,搜索用时 15 毫秒
51.
Ebola virus (EboV) causes rapidly fatal hemorrhagic fever in humans and there is currently no effective treatment. We found that the infection of African green monkey kidney (Vero) cells by vesicular stomatitis viruses bearing the EboV glycoprotein (GP) requires the activity of endosomal cysteine proteases. Using selective protease inhibitors and protease-deficient cell lines, we identified an essential role for cathepsin B (CatB) and an accessory role for cathepsin L (CatL) in EboV GP-dependent entry. Biochemical studies demonstrate that CatB and CatL mediate entry by carrying out proteolysis of the EboV GP subunit GP1 and support a multistep mechanism that explains the relative contributions of these enzymes to infection. CatB and CatB/CatL inhibitors diminish the multiplication of infectious EboV-Zaire in cultured cells and may merit investigation as anti-EboV drugs.  相似文献   
52.
53.
The importance of the soil humus content is indisputable. Soil humus plays an important role in preserving soil fertility and exerts great influence on plant production and yield potential. However, proofing that management‐related changes in the stock of soil organic matter (SOM) have taken place against the background of spatial and temporal variation is a difficult task. In most cases, sampling over a long period of time is needed to verify these changes. Alternatively, potential changes in the SOM stock can be estimated using humus balancing models, which help to identify the need for humus reproduction on a farm. In general, a humus balance is the difference between the humus demand of cultivated crops and humus supply through crops and organic fertilizers. In this study, the ‘Dynamic Humus Unit Method' within the modelling program REPRO was applied to calculate the humus balance for 29 model‐farms that are representative of most of the agricultural production in Austria. Each model‐farm represents a specific production type (PT) and farming system in a defined region or main production area (MPA). This approach gives an overview of the humus balances at a large scale and allows a general trend in Austria to be estimated. Besides differing between conventional and organic farming systems, specific site conditions can also be selected in the model. The constructed model‐farms belong to different PTs such as “forage production”, “cash crops”, “refinement”, and “permanent crops”. The PT “permanent crops” refers to the cultivation of wine. The cropping system of each PT was analyzed in detail, while livestock keeping was considered only when applicable. Positive humus balances were found for all PTs except for permanent crops. The results ranged from –122 to 890 kg C ha?1 y?1. Regions and farm structure, e.g., forage production compared to cash crop, were found to have a greater influence than the kind of farming system (i.e., organic vs. conventional farming). Comparing the different PTs, forage production had the highest positive humus balances (219 to 890 kg C ha?1 y?1), followed by cash crop (24 to 239 kg C ha?1 y?1), refinement (–64 to 402 kg C ha?1 y?1) and permanent crops (–122 to –38 kg C ha?1 y?1). Regarding the farming system, organic farming led to more humus accumulation than conventional farming due to a higher share of fodder legumes and catch crops and more diverse crop rotations. The results were within the range of available empirical data on SOM change, and it was therefore concluded that the results are reasonable. In general, humus reproduction can be regarded as sufficient for agricultural production.  相似文献   
54.
The genetic structures of six populations of English yew (Taxus baccata L.) from different parts of Bosnia and Herzegovina have been characterized by means of isozyme analyses. Using six polymorphic gene loci, a total of 16 alleles have been found with a number of nine alleles, which were in common in all populations. In general, the values of observed heterozygosity reflect a very high level of individual genetic variation. Great differences in the relative allele frequencies lead to relatively high gene pool distances between the populations. Whereas the genetic structures of four populations corresponded essentially with the results of publicized investigations of yew populations from other parts of Europe, two occurrences show great differences. The possible reasons of these peculiarities are discussed. Based on the results of the genetic analyses, different measures for the maintenance and development of the genetic resources are recommended. The conservation management on the population level can prevent the possible loss of genetic adaptation as far as the reasons of genetic differences and their importance are not discovered to a sufficient extent.  相似文献   
55.
In herds with known prevalence (P) use of environmental sampling (ES) to detect Mycobacterium avium ssp. paratuberculosis (MAP) infected cattle herds was proofed in relation to P. In 31 MAP-infected free stall dairy herds and 15 non-infected herds P was defined by annually repeated whole herd testing by fecal culture (34 877 individual samples). Eight infected herds had a very low (> 0-2%), 14 a low (> 2-5%), four a medium (> 5-10%), and five a high P (> 10%). A mean number of nine environmental samples per herd were collected from the floor of lactating cows, milking, calving and sick cow areas and the crossover to the calf area. After twelve weeks cultivation on HEYM-medium with and without mycobactin positive samples were further characterized by PCR. All non-infected herds (100%) showed negative and 22 (71%) of the infected herds positive results in ES. Nine infected herds with negative ES results had a low P (0.04-4,04%). Proportion of positive ES depended on P and on sampling areas with 53.3% positive results in lactating cow areas and 45.2% in milking areas. For P > 5%, ES in these two areas caused a positive herd status; herds with P < 5% required sampling in the other areas too. The ES method has a herd sensitivity of 87% for dairy herds with P > 2% and provides an efficient tool to determine MAP infection status or herd prevalence.  相似文献   
56.
Soil organic matter contents, soil microbial biomass, potentially mineralizable nitrogen (N) and soil pH values were investigated in the Ap horizons of 14 field plots at 3 sites which had been under organic farming over various periods. The objective was to test how these soil properties change with the duration of organic farming. Site effects were significant for pH values, microbial biomass C and N, and for potentially mineralizable N at 0—10 cm depth. The contents of total organic C, total soil N, and potentially mineralizable N tended to be higher in soils after 41 versus 3 years of organic farming, but the differences were not significant. Microbial biomass C and N contents were higher after 41 years than after 3 years of organic farming at 0—10 cm depth, and the pH values were increased at 10—27 cm depth. Nine years of organic farming were insufficient to affect soil microbial biomass significantly. Increased biomass N contents help improve N storage by soil micro‐organisms in soils under long‐term organic farming.  相似文献   
57.
Total soil organic carbon (TOC) and nitrogen (Nt) and labile soil N and C fractions were investigated in a field experiment in the Swabian Mountains, Germany. The plots used had been farmed conventionally or organically since 1972 and treated with either mineral or organic fertiliser. There were no significant differences between organic and conventional plots in terms of TOC, Nt, C and N mineralisation potentials (Cpot, Npot) and microbial C/N ratio. Microbial biomass C and N, however, were significantly higher on organic plots in spring. There was only a weak correlation between Npot and microbial N. It is proposed that limitations in microbial N availability, as reflected in the microbial N/C ratio, control net N mineralisation rates in the incubation experiments, as indicated by the highly significant correlations between both Npot and Npot/Cpot ratios and microbial N/C ratios. The conclusion reached is that, under these field conditions, the positive effect of organic farming on the microbial biomass N pool does not contribute to an (relative or absolute) increase in the N available to plants.  相似文献   
58.
Soil moisture and gaseous N-flux (N2O, N2) dynamics in Costa Rican coffee plantations were successively simulated using a mechanistic model (PASTIS) and two process-based models (NGAS and NOE). Two fertilized (250 kg N ha−1 y−1) coffee plantations were considered, namely a monoculture and a system shaded by the N2 fixing legume species Inga densiflora. In situ N2O fluxes were previously measured in these plantations. NGAS and NOE used specific microbial activities for the soils. To parameterize NGAS, we estimated N mineralization via in situ incubations and the contribution of heterotrophic soil respiration to total soil respiration. Potential denitrification rates and the proportion of denitrified N emitted as N2O were measured in the laboratory to define the values of NOE parameters, as well as nitrification rates and related N2O production rates for parameterizing both models. Soil moisture and both NGAS and NOE N2O fluxes were best modelled on an hourly time step. Soil moisture dynamics were satisfactorily simulated by PASTIS. Simulated N2O fluxes by both NGAS and NOE (3.2 and 2.1 kg N ha−1 y−1 for NGAS; 7.1 and 3.7 kg N ha−1 y−1 for NOE, for the monoculture and shaded plantations respectively) were within a factor of about 2 of the observed annual fluxes (4.3 and 5.8 kg N ha−1 y−1, for the monoculture and shaded plantations respectively). Statistical indicators of association and coincidence between simulated and measured values were satisfactory for both models. Nevertheless, the two models differed greatly in describing the nitrification and denitrification processes. Some of the algorithms in the model NGAS were apparently not applicable to these tropical acidic Andosols. Therefore, more detailed information about microbial processes in different agroecosystems would be needed, notably if process-oriented models were to be used for testing strategies for mitigating N2O emissions.  相似文献   
59.
Soil erosion is the main process leading to soil degradation on the Loess Plateau of China. The effects of soil‐erosion intensity (sheet, rill, and gully erosion) and different land use (140 y–old secondary forest site, 16 y–old bare site, 6 y–old succession site, and 43 y–old arable site) on gross and net N mineralization, soil organic‐carbon (SOC) turnover, the size and structure of the soil microbial community (phospholipid fatty acid analysis) were assessed. Erosion intensity in the bare plot increased from top slope (sheet erosion) to down slope (gully erosion). The more severe the soil erosion the stronger was the decline of SOC, total N, and microbial biomass (MB). The MBC/SOC ratio decreased whereas the metabolic quotient (qCO2) increased. Differences in nutrient turnover in the different erosion zones of the bare plot were not significant. The microbial community changed towards less Gram negative bacteria and relative more fungi in the gully‐erosion zone. In forest soils, qCO2 and the MBC/SOC ratio demonstrate a higher substrate‐use efficiency of the microbial biomass than in bare soils. Gross N mineralization and gross NH consumption clearly indicated a higher microbial activity in forest than in bare soils. Arable land use shifted the soil microbial community towards a higher relative abundance of fungi and a lower one of actinomycetes. During 6 y of natural succession on former bare plots, soil nutrient content and turnover as well as microbial biomass and structure developed towards forest conditions.  相似文献   
60.
This study quantifies the influence of Poa alpina on the soil microbial community in primary succession of alpine ecosystems, and whether these effects are controlled by the successional stage. Four successional sites representative of four stages of grassland development (initial, 4 years (non-vegetated); pioneer, 20 years; transition, 75 years; mature, 9500 years old) on the Rotmoos glacier foreland, Austria, were sampled. The size, composition and activity of the microbial community in the rhizosphere and bulk soil were characterized using the chloroform-fumigation extraction procedure, phospholipid fatty acid (PLFA) analysis and measurements of the enzymes β-glucosidase, β-xylosidase, N-acetyl-β-glucosaminidase, leucine aminopeptidase, acid phosphatase and sulfatase. The interplay between the host plant and the successional stage was quantified using principal component (PCA) and multidimensional scaling analyses. Correlation analyses were applied to evaluate the relationship between soil factors (Corg, Nt, C/N ratio, pH, ammonium, phosphorus, potassium) and microbial properties in the bulk soil. In the pioneer stage microbial colonization of the rhizosphere of P. alpina was dependent on the reservoir of microbial species in the bulk soil. As a consequence, the rhizosphere and bulk soil were similar in microbial biomass (ninhydrin-reactive nitrogen (NHR-N)), community composition (PLFA), and enzyme activity. In the transition and mature grassland stage, more benign soil conditions stimulated microbial growth (NHR-N, total amount of PLFA, bacterial PLFA, Gram-positive bacteria, Gram-negative bacteria), and microbial diversity (Shannon index H) in the rhizosphere either directly or indirectly through enhanced carbon allocation. In the same period, the rhizosphere microflora shifted from a G to a more G+, and from a fungal to a more bacteria-dominated community. Rhizosphere β-xylosidase, N-acetyl-β-glucosaminidase, and sulfatase activity peaked in the mature grassland soil, whereas rhizosphere leucine aminopeptidase, β-glucosidase, and phosphatase activity were highest in the transition stage, probably because of enhanced carbon and nutrient allocation into the rhizosphere due to better growth conditions. Soil organic matter appeared to be the most important driver of microbial colonization in the bulk soil. The decrease in soil pH and soil C/N ratio mediated the shifts in the soil microbial community composition (bacPLFA, bacPLFA/fungPLFA, G, G+/G). The activities of β-glucosidase, β-xylosidase and phosphatase were related to soil ammonium and phosphorus, indicating that higher decomposition rates enhanced the nutrient availability in the bulk soil. We conclude that the major determinants of the microflora vary along the successional gradient: in the pioneer stage the rhizosphere microflora was primarily determined by the harsh soil environment; under more favourable environmental conditions, however, the host plant selected for a specific microbial community that was related to the dynamic interplay between soil properties and carbon supply.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号