首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   136篇
  免费   11篇
  国内免费   1篇
林业   9篇
农学   9篇
基础科学   1篇
  45篇
综合类   10篇
农作物   14篇
水产渔业   4篇
畜牧兽医   33篇
园艺   5篇
植物保护   18篇
  2023年   5篇
  2022年   13篇
  2021年   6篇
  2020年   16篇
  2019年   10篇
  2018年   15篇
  2017年   13篇
  2016年   9篇
  2015年   8篇
  2014年   6篇
  2013年   6篇
  2012年   9篇
  2011年   9篇
  2009年   2篇
  2008年   10篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  1999年   1篇
  1998年   1篇
  1987年   1篇
  1982年   1篇
排序方式: 共有148条查询结果,搜索用时 203 毫秒
81.
The effects of integrated nutrient management, cultivation method, and variety on root and shoot growth, grain yield and its components of lowland rice under alternate wetting and drying (AWD) irrigation were evaluated. Treatments included were three varieties (Pathumthani 1, RD57, and RD41), three cultivation methods [dry direct seeding, wet direct seeding, and transplanting], and three nutrient combinations [100% NPK (160?kg ha?1), 50% NPK (80?kg ha?1) + 50% FYM (5 t ha?1), and 100% FYM (10 t ha?1)] under AWD. Root dry matter of RD41 and RD57 was reduced by 12–25% at the 100% NPK and 100% FYM compared with the 50% NPK + 50% FYM. Panicle number, panicle length, and 1000-grain weight were higher at the 50% NPK + 50% FYM. Application of the 50% NPK + 50% FYM could be a feasible option under AWD irrigation; however, benefits may vary with varieties and cultivation methods.  相似文献   
82.
Rice production in Pakistan is constraint by many factors pertaining to prevalent planting techniques. A research on the feasibility of new planting techniques (direct seeding on flat, transplanting on flat, direct seeding on ridges, transplanting on ridges and parachute planting) in transplanted and direct wet-seeded rice was undertaken at Dera Ismail Khan region of Pakistan’s North West Frontier Province during 2002 and 2003. Among the planting techniques, the best performance for the yield formation and economic evaluation was noted for transplanting on flat during both years. Chinese parachute planting technology also showed very promising results in most of the parameters. Direct seeding on ridges could not excel transplanting on flat and parachute planting during both cropping seasons. The findings concluded the feasibility of parachute planting technology along with traditional rice transplanting on flat over all other planting techniques being practiced in the area.  相似文献   
83.
Radiation is considered as a promising insect pest control strategy for minimizing postharvest yield losses. Among various techniques, irradiation is a method of choice as it induces lethal biochemical or molecular changes that cause a downstream cascade of abrupt physiological abnormalities at the cellular level. In this study, we evaluated the effect of 60Co-γ radiation on various developmental stages of Zeugodacus cucurbitae Coquillett and subsequent carry-over effects on the progeny. For this purpose, we treated eggs with 30- and 50-Gy radiation doses of 60Co-γ. We found that radiation significantly affected cellular antioxidants, insect morphology, and gene expression profiles. Our results indicate that in response to various doses of irradiation reactive oxygen species, catalase, peroxidase, and superoxide dismutase activities were increased along with a significant increase in the malondialdehyde (MDA) content. We observed higher mortality rates during the pupal stage of the insects that hatched from irradiated eggs (50 Gy). Furthermore, the life span of the adults was reduced in response to 50 Gy radiation. The negative effects carried over to the next generation were marked by significantly lower fecundity in the F1 generation of the irradiation groups as compared to control. The radiation induced morphological abnormalities at the pupal, as well as the adult, stages. Furthermore, variations in the gene expression following irradiation are discussed. Taken together, our results signify the utility of 60Co-γ radiation for fruit fly postharvest management.  相似文献   
84.
Heat stress significantly limits yield in many wheat-growing areas globally including north-western NSW. While various traits linked to high-temperature tolerance have been identified, the combination of traits that optimize the heat tolerance of wheat has not been established in most environments. A total of 554 genotypes were evaluated in the field at different times of sowing in north-western NSW for three consecutive years to develop a heat-tolerant wheat ideotype for this environment. The later sown experiments were exposed to higher temperatures at the critical reproductive and grain-filling stages of development. The impact of high temperature was greatest at anthesis, and eventual grain yield was reduced by between 4% and 7% with every 1°C rise in average maximum temperature above the optimum of 25°C. High temperature reduced yield, plant height, grain weight and days to anthesis and maturity, and increased the percentage of screenings and grain protein content. Genotypes that produced higher yield under heat stress had shorter days to flowering and maturity, higher NDVI during grain filling, greater chlorophyll content at the milk stage of grain fill, taller plants, greater grain weight and number, and lower screenings compared with the benchmark cultivar Suntop. The genotype closest to the predicted heat-tolerant wheat ideotype identified from trait ranges had 79.6% similarity.  相似文献   
85.
The effect of total mixed ratios containing wheat middlings (WM) as a corn grain substitute on the growth performance and carcass traits of Comisana ewe lambs was evaluated. Forty ewe lambs, with average live body weight of 13 ± 0.3 kg (mean ± SEM), were allocated randomly to two isocaloric and isonitrogenous diets for 50 days. Control diet contained 400 g/kg of dry matter (DM) of corn as the main starchy source, whereas experimental diet contained 600 g/kg DM of WM. In vivo nutrient apparent digestibility of the two diets was determined using Comisana rams (mean body weight, 65 ± 2.3 kg) and indicated significant (P < 0.05) differences for neutral detergent fibre, acid detergent fibre, cellulose and hemicellulose fractions. Results from the trial using Comisana ewe lambs showed that growth traits were unaffected by dietary treatments as well as none of the carcass measurements examined (P > 0.05). These findings indicate that WM results as a suitable feed ingredient for growing ewe lambs that can be a satisfactory substitute to conventional grain source.  相似文献   
86.
Water‐saving rice production systems are inevitable in the wake of severe water shortage in rice‐growing regions of the world. Mulches can improve water productivity, yield and quality of rice through increase in water retention. Studies were conducted for two consecutive years to assess the potential role of mulches (plastic and straw) in improving the performance of water‐saving rice production systems in comparison with no mulch used and conventionally irrigated transplanted rice. Water‐saving rice production systems in this study comprise aerobic rice and transplanted rice with intermittent irrigation. These systems saved water (18–27 %) with improved water productivity more than the conventional system. However, these systems caused a yield penalty of 22–37 %; nevertheless, these yield losses were compensated with the application of mulches under water‐saving rice production systems. Both plastic and straw mulches were helpful in improving moisture retention and water productivity (0.18–0.25 kg grain m?3 water) relative to non‐mulch treatments (0.19–0.29 kg grain m?3 water). Mulch application was also helpful in reducing the number of non‐productive tillers and sterile spikelets, and improving the productive tillers, kernel number and size, and kernel quality. Plastic mulch was more effective than straw mulch in improving water retention, water productivity and reducing spikelet sterility. In conclusion, the mulching improved the soil moisture retention, and thus enhanced the rice water productivity, spikelet fertility, paddy yield and quality of rice. This signifies the importance of mulching in water‐saving rice production systems.  相似文献   
87.

The deficiency of micronutrients, particularly zinc (Zn) and boron (B) has affected vegetative growth, yield and fruit quality of sweet orange in many citrus growing areas of Pakistan. The present study was conducted in 2015 and 2016 to determine the impact of Zn and B supplementation on growth and quality of sweet orange cv. ‘Blood red’. Pre-harvest foliar application of variant Zn and B levels was done at different phenological stages of fruit growth and development, i.e., full bloom, fruit set and premature stage. Results have concluded that pre-harvest foliar application of Zn and B augmented phosphorous, Zn, B, potassium, iron, and manganese contents in leaves, particularly Zn and B content from deficient to optimal level. Moreover, the combined application of Zn and B has also significantly enhanced vegetative characters such as tree height and spread along with reproductive characters, i.e., incremented numbers of fruit, fruit weight, total soluble solids, titratable acidity and ascorbic acid contents. However, among stage comparison, outcomes depicted that foliar application of Zn and B at full bloom?+?fruit set?+?premature stage resulted in maximum production with high quality fruits.

  相似文献   
88.

Clavibacter michiganensis subsp. michiganensis is a very important pathogen that causes bacterial wilt of tomato (BWT). Biological control of plant diseases is a critical tool for protecting the environment from chemical pollution. Twenty-five isolates of the genus Trichoderma were obtained from a healthy tomato root. Of the 25 isolates, KABOFT4 showed highly antagonistic activity that controlled the growth of C. michiganensis subsp. michiganensis (Cmm7) under in vitro conditions. The 5.8S ribosomal RNA gene and internal transcribed spacer identified the isolate as Trichoderma harzianum KABOFT4. The effect of this isolate as a soil drench and/or foliar application on bacterial wilt under greenhouse conditions was studied. The germination percentage of tomato seed treated with KABOFT4 increased by 36.7% compared to infected seed treated with only the pathogen Cmm7. Under greenhouse conditions, tomato seedlings treated with KABOFT4 as a soil drench, foliar and soil treatment, and foliar treatment had a 61.3, 26.7, and 40% reduced disease severity relative to the infected control, respectively. All treatments had a positive effect on tomato plants that presented as greater vegetative growth and accumulation of dry matter. The best fresh and dry weight was recorded when plants were treated with KABOFT4 as a soil and foliar application. Tomato plants treated with KABOFT4 also had increased total phenol and flavonoid contents in inoculated and non-inoculated plants compared to untreated plants. Under greenhouse conditions, T. harzianum strains can be used as an environmentally friendly way to manage the most economically important tomato disease. The results showed that a native endophytic strain of T. harzianum was a potent biocontrol agent against C. michiganensis subsp. michiganensis. Application of this strain to tomatoes in the greenhouse resulted in a decrease in disease severity and an increase in crop biomass.

  相似文献   
89.

Abiotic stress has a negative impact on plant physiology, influencing the overall growth and development of plant crops. Saline stress is one of the most serious environmental issues limiting crop plant production. Biofertilizers are reparative elements used in soil to increase tolerance to salinity and drought stress. We investigated the effect of salinity stress on qualitative and quantitative characteristics of cherry tomato plants (Lycopersicon esculentum cerasiforme) with biofertilizer application 0, 15 and 30 days after transplanting in this study. After different days of transplantation, different levels of salinity (0, 50, 100, and 150?mM) were used with biofertilizer (Azospirillum sp. and Azotobacter sp.) application (0, 15 and 30 days). The salinity (150?mM NaCl) significantly affected the studied variables, which were recorded with minimum levels of leaf area (52.42?cm2), root length (6.54?cm), fresh root weight (13.64?g), yield (6.52 tons/ha), leaf chlorophyll content (36.11?mg/m2) and maximum levels of total soluble solids (TSS, 8.87 °Brix). Control samples had higher leaf area (58.35?cm2), root length (15.23?cm), fresh root weight (17.86?g), yield (9.39 tons/ha), leaf chlorophyll content (44.09?mg/m2), and lower TSS (7.93 °Brix). Plants that received biofertilizer (15 days after transplanting) had higher plant height (73.41?cm), stem diameter (0.74?cm), leaf area (61.16?cm2), root length (15.35?cm), fresh root weight (18.38?g), root dry matter (60.41%), yield (10.43?t/ha), leaf chlorophyll content (42.55?mg/m2), fruit dry matter content (10.12?g), pH 4.52, and TSS (9.30 °Brix). The minimum plant height (51.33?cm), stem diameter (0.55?cm), leaf area (49.60?cm2), root length (7.04?cm), fresh root weight (12.76?g), root dry matter (42.16?g), yield (5.15 tons/ha), leaf chlorophyll content (35.18?mg/m2), fruit dry matter content (6.59?g), pH 4.27 and TSS (7.55 °Brix) were recorded in plants with no application of biofertilizer. The present study revealed that most growth and quality variables were negatively affected by salinity except for TSS, which showed positive effect with application of 150?mM of NaCl. Biofertilizer application at 15 days significantly influences the quantitative and qualitative attributes of cherry tomato under different levels of salinity.

  相似文献   
90.

Purpose

Soil organic matter (SOM) plays a vital role in controlling metal bioavailability. However, the relationship between SOM and its fractions, including water-soluble substances (WSS), fulvic acid (FA), humic acid (HA), and soil microbial biomass (SMB), to metal bioavailability in plants has not been thoroughly investigated. This study examined the compositional change of SOM after tea polyphenols (TPs) were added to the soil and its correlation with Pb bioavailability.

Materials and methods

Ultisol samples were collected from Fuyang, spiked with two levels (0 and 300 mg kg?1 DW) of Pb, and aged for 30 days. Four uniform seedlings were transplanted to each plastic pot, which were filled with 3 kg of air-dried soil. After successful transplantation, three levels (0, 300, and 600 mg kg?1 DW) of TPs were amended as irrigation solution for the pots. The Pb concentrations in different tissues of the tea plants were determined after 6 months. SOM, WSS, FA, HA, and SMB were extracted and quantified using a Multi N/C Total Organic Carbon Analyser.

Results and discussion

Adding TPs to Pb-polluted soils alleviated Pb toxicity to microorganisms and increased SMB and the rhizosphere effect. The rhizosphere SOM was lower than bulk SOM in Pb-unspiked soils, while the opposite results were observed in Pb-spiked soils. A similar inconsistency for HA in the rhizosphere and bulk soil between Pb-unspiked and Pb-spiked soils might explain the difference in SOM. FA increased with the addition of TPs in both the rhizosphere and bulk soils, which might be the result of TP transformation. Positive correlations are present between the compositions of rhizosphere SOM and Pb in different tissues of the tea plant. SMB correlated negatively with Pb in young leaves and stems. Compared to rhizosphere soil, SOM components in bulk soil were less strongly correlated with Pb in tea plants.

Conclusions

Addition of TPs to soil changes the components of SOM and Pb bioavailability. SOM and its fractions, including WSS, FA, HA, and SMB, show a close relationship to Pb in different tissues of the tea plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号