首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   326篇
  免费   14篇
  国内免费   1篇
林业   20篇
农学   6篇
基础科学   1篇
  86篇
综合类   38篇
农作物   7篇
水产渔业   22篇
畜牧兽医   149篇
园艺   5篇
植物保护   7篇
  2023年   2篇
  2021年   4篇
  2020年   4篇
  2019年   7篇
  2018年   10篇
  2017年   12篇
  2016年   8篇
  2015年   9篇
  2014年   3篇
  2013年   25篇
  2012年   22篇
  2011年   23篇
  2010年   14篇
  2009年   15篇
  2008年   27篇
  2007年   25篇
  2006年   28篇
  2005年   23篇
  2004年   18篇
  2003年   19篇
  2002年   18篇
  2001年   5篇
  2000年   4篇
  1999年   3篇
  1997年   2篇
  1996年   1篇
  1993年   2篇
  1990年   2篇
  1989年   1篇
  1980年   1篇
  1977年   1篇
  1975年   1篇
  1970年   1篇
  1969年   1篇
排序方式: 共有341条查询结果,搜索用时 15 毫秒
111.
Although the Midwestern United States is one of the world's major agricultural production areas, few studies have assessed the effects of the region's predominant tillage and rotation practices on greenhouse gas emissions from the soil surface. Our objectives were to (a) assess short-term chisel (CP) and moldboard plow (MP) effects on soil CO2 and CH4 fluxes relative to no-till (NT) and, (b) determine how tillage and rotation interactions affect seasonal gas emissions in continuous corn and corn–soybean rotations on a poorly drained Chalmers silty clay loam (Typic Endoaquoll) in Indiana. The field experiment itself began in 1975. Short-term gas emissions were measured immediately before, and at increasing hourly intervals following primary tillage in the fall of 2004, and after secondary tillage in the spring of 2005, for up to 168 h. To quantify treatment effects on seasonal emissions, gas fluxes were measured at weekly or biweekly intervals for up to 14 sampling dates in the growing season for corn. Both CO2 and CH4 emissions were significantly affected by tillage but not by rotation in the short-term following tillage, and by rotation during the growing season. Soil temperature and moisture conditions in the surface 10 cm were significantly related to CO2 emissions, although the proportion of variation explained by temperature and moisture was generally very low (never exceeded 27%) and varied with the tillage system being measured. In the short-term, CO2 emissions were significantly higher for CP than MP and NT. Similarly, mean seasonal CO2 emissions during the 2-year period were higher for CP (6.2 Mg CO2-C ha−1 year−1) than for MP (5.9 Mg CO2-C ha−1 year−1) and NT (5.7 Mg CO2-C ha−1 year−1). Both CP and MP resulted in low net CH4 uptake (7.6 and 2.4 kg CH4-C ha−1 year−1, respectively) while NT resulted in net emissions of 7.7 kg CH4-C ha−1 year−1. Mean emissions of CO2 were 16% higher from continuous corn than from rotation corn during the two growing seasons. After 3 decades of consistent tillage and crop rotation management for corn and soybean producing grain yields well above average in the Midwest, continuous NT production in the corn–soybean rotation was identified as the system with the least soil-derived C emissions to the atmosphere from among those evaluated prior to and during corn production.  相似文献   
112.
113.
114.
115.
116.
117.
Vegetation change and anthropogenic development are altering ecosystems and decreasing biodiversity. Successful management of ecosystems threatened by multiple stressors requires development of ecosystem conservation plans rather than single species plans. We selected the big sagebrush (Artemisia tridentata Nutt.) ecosystem to demonstrate this approach. The area occupied by the sagebrush ecosystem is declining and becoming increasingly fragmented at an alarming rate because of conifer encroachment, exotic annual grass invasion, and anthropogenic development. This is causing range-wide declines and localized extirpations of sagebrush associated fauna and flora. To develop an ecosystem conservation plan, a synthesis of existing knowledge is needed to prioritize and direct management and research. Based on the synthesis, we concluded that efforts to restore higher elevation conifer-encroached, sagebrush communities were frequently successful, while restoration of exotic annual grass-invaded, lower elevation, sagebrush communities often failed. Overcoming exotic annual grass invasion is challenging and needs additional research to improve the probability of restoration and identify areas where success would be more probable. Management of fire regimes will be paramount to conserving sagebrush communities, as infrequent fires facilitate conifer encroachment and too frequent fires promote exotic annual grasses. Anthropogenic development needs to be mitigated and reduced to protect sagebrush communities and this probably includes more conservation easements and other incentives to landowners to not develop their properties. Threats to the sustainability of sagebrush ecosystem are daunting, but a coordinated ecosystem conservation plan that focuses on applying successful practices and research to overcome limitations to conservation is most likely to yield success.  相似文献   
118.
119.
120.
Cyberinfrastructure for e-Science   总被引:1,自引:0,他引:1  
Here we describe the requirements of an e-Infrastructure to enable faster, better, and different scientific research capabilities. We use two application exemplars taken from the United Kingdom's e-Science Programme to illustrate these requirements and make the case for a service-oriented infrastructure. We provide a brief overview of the UK "plug-and-play composable services" vision and the role of semantics in such an e-Infrastructure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号