首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   317篇
  免费   9篇
  国内免费   3篇
林业   26篇
农学   16篇
基础科学   3篇
  181篇
综合类   31篇
农作物   14篇
水产渔业   13篇
畜牧兽医   21篇
园艺   6篇
植物保护   18篇
  2023年   3篇
  2022年   4篇
  2021年   3篇
  2020年   12篇
  2019年   6篇
  2018年   4篇
  2017年   9篇
  2016年   15篇
  2015年   6篇
  2014年   9篇
  2013年   31篇
  2012年   4篇
  2011年   8篇
  2010年   9篇
  2009年   7篇
  2008年   24篇
  2007年   9篇
  2006年   5篇
  2005年   16篇
  2004年   5篇
  2003年   8篇
  2002年   8篇
  2001年   9篇
  2000年   8篇
  1999年   3篇
  1998年   2篇
  1997年   5篇
  1996年   5篇
  1995年   2篇
  1994年   3篇
  1993年   3篇
  1991年   8篇
  1990年   2篇
  1989年   15篇
  1988年   2篇
  1987年   5篇
  1986年   3篇
  1985年   4篇
  1984年   5篇
  1983年   3篇
  1982年   5篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1977年   4篇
  1976年   5篇
  1971年   4篇
  1970年   3篇
  1966年   2篇
排序方式: 共有329条查询结果,搜索用时 140 毫秒
131.
The West Asia–North Africa (WANA) region has a land area of 1.7 billion ha, and a population of 600 million. Desertification and soil degradation are severe problems in the region. The problem of drought stress is exacerbated by low and erratic rainfall and soils of limited available water holding capacity and soil organic carbon (SOC) content of less than 0.5 per cent. The SOC pool of most soils has been depleted by soil degradation and widespread use of subsistence and exploitative farming systems. The historic loss of a SOC pool for the soils of the WANA region may be 6–12 Pg compared with the global loss of 66–90 Pg. Assuming that 60 per cent of the historic loss can be resequestered, the total soil‐C sink capacity of the WANA region may be 3–7 Pg. This potential may be realized through adoption of measures to control desertification, restore degraded soils and ecosystems, and improve soil and crop management techniques that can enhance the SOC pool and improve soil quality. The strategies of soil‐C sequestration include integrated nutrient management (INM) and recycling, controlled grazing, and growing improved fodder species on rangeland. Improved technologies for cropland include use of INM and biofertilizers, appropriate tillage methods and residue management techniques, crop rotations and cover crops, and water and nutrient recycling technologies. Through adoption of such measures, the potential of soil‐C sequestration in the WANA region is 0.2–0.4 Pg C yr−1. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
132.
133.
134.
R. Lal 《Geoderma》1976,16(5):377-387
The effects of four rates of straw mulching on runoff and soil loss were compared with those of no-tillage treatments under natural rainfall conditions using field runoff plots of 25 × 4 m established at 1, 5, 10 and 15% slopes on the International Institute of Tropical Agriculture (IITA) research site near Ibadan, Nigeria. The four rates of straw mulching were 0, 2, 4 and 6 t/ha. The mean annual runoff was 50, 10, 4 and 2% of the total annual rainfall for mulch rates of 0, 2, 4 and 6 t/ha, respectively. Runoff from unmulched treatments was not related to slope. Runoff loss from no-till treatments was only 2% of the rain received. The mean soil losses for the rainstorms greater than 25 mm were 143, 16, 2 and 0.4 kg/ha per mm of rain received for mulched rates of 0, 2, 4 and 6 t/ha, respectively. The soil loss declined exponentially with increasing mulch rate with exponents ranging from approximately ?0.3 to ?0.7. The soil losses from the no-till plots were equal to those from plots that received mulch at the rate of 6 t/ha. Soil erodibility was significantly influenced by time after clearing, with maximum K reached two to three years after forest removal. The nutrient loss in runoff and eroded soil was significant only for unmulched treatments. The maximum annual loss of NO3-N in runoff was about 15 kg/ha. The maximum annual loss of total N in eroded soil from unmulched plots was about 180 kg/ha, that of P, 5 kg/ha, and that of K, about 14 kg/ha.  相似文献   
135.
R. Lal 《Geoderma》1976,16(5):403-417
Nutrient element losses in runoff and eroded sediments were monitored during 1972 on different slopes and under different soil and crop management treatments. The experiments were conducted on 25 × 4 m field runoff plots, established on natural slopes of 1, 5, 10 and 15%. The soil and crop management treatments consisted of bare fallow (plowed), maize-maize (plowed and mulched), maize-maize (plowed), maize-cowpeas (no-till), and cowpeas-maize (plowed).Total loss of nutrient elements in runoff and eroded soil materials was significantly affected by slope and by soil and crop management treatments. Total annual nutrient element losses in runoff were 55 kg/ha for bare-fallow, 17 kg/ha for maize-maize (plowed), 12 kg/ha for cowpeas-maize (plowed), 2.3 kg/ha for maize-maize (plowed and mulched) and 4.3 kg/ha for maize-cowpeas (no-till). The concentration of nitrate in seepage water was two or three times higher than in surface water. Nutrient losses in eroded soil materials from the mulched and no-till treatments were negligible. From the plowed treatments, greatest losses were of organic matter and total nitrogen. The enrichment ratios were 2.4 times for organic carbon, 1.6 times for N, and 5.8 times for available phosphorus.  相似文献   
136.
Water management in various crop production systems related to soil tillage   总被引:2,自引:0,他引:2  
Soil tillage, of different types and intensity and performed at different antecedent soil moisture conditions, is an important tool for agricultural water management. Tillage systems have important applications for increasing irrigation efficiency, enhancing the effectiveness of drainage systems, improving water quality, decreasing runoff losses and minimizing soil erosion, increasing runoff losses for water harvesting and supplemental irrigation, and decreasing percolation losses and creating aquatic environments for rice cultivation. The versatility and diversity of applications of tillage systems depend on the choice of tillage techniques. No-tillage methods with residue mulches are useful to conserve soil water. Chisel tillage and subsoiling methods along with ridge-tillage techniques are useful in increasing irrigation efficiency. No-tillage systems are useful in decreasing sediment density and transport of sediment laden pollutants in runoff, and puddling and wet tillage techniques or soil compaction are used in rice cultivation. Finally soil compaction and techniques to increase water repellence are useful for water harvesting for subsequent use in supplemental irrigation.  相似文献   
137.
Land configuration in combination with nutrient management has the potential to improve the productivity of Alfisols and Vertisols in the semi-arid tropics. A four year (1989–1990 and 1992–1993) field experiment was conducted at Coimbatore, India on Alfisols (Chromic Cambisol) to compare the effect of land configuration and nutrient management practices on yield of rainfed sorghum (Sorghum bicolor (L.) Moench). The land configuration treatments were flat bed (FB, the traditional practice), open ridging (OR, ridges, 45 cm apart and 30 cm high) and tied ridging (TR, same as OR plus ridges were tied randomly). The manure and fertilisers were farm yard manure (FYM, livestock excreta plus litter at 5 Mg ha−1) and coir dust (CD, by-product after the extraction of coir from the coconut (Cocos nucifera L.) husk at 12.5 Mg ha−1) in combination with nitrogen (N) and phosphorus (P) fertiliser levels. Tied ridges stored 14% more soil water and produced 14% and 11% more grain and straw yields of sorghum, respectively, than did flat bed. However, crop yield in TR was comparable with OR. Application of CD at 12.5 Mg ha−1 combined with 40 kg N ha−1 and 9 kg P ha−1 was beneficial for more soil water storage and increased yield of sorghum by 7% over FYM at 5 Mg ha−1 + 40 kg N ha−1 and 9 kg P ha−1. In Vertisols (Vertic Cambisols), experiments were conducted for two years (1991–1992 and 1992–1993) to evaluate land configuration practices. The treatments were broad bed furrow (BBF, 120 cm wide bed with 30 cm wide and 15 cm deep furrows on both sides), compartmental bunding (CB, bunds of 15 cm height formed in all the four sides to form a check basin of 6 m × 5 m size), ridging (RD, ridges were formed for each and every row of the crop manually at four weeks after sowing) and FB under sorghum + pigeonpea (Cajanus cajan (L.) Millsp) and pearl millet (Pennisetum glacum (L.) Stuntz) + cowpea (Vigna unguiculata (L.) Walp) intercropping separately. Compartmental bunding stored 22% more soil moisture and increased the yield of sorghum + pigeonpea intercropping than did FB in a low rainfall year. In a high rainfall year, BBF produced 34% and 33% more grain yield of sorghum and pearl millet base crops, respectively, over FB. However, BBF and CB were comparable. Pigeonpea intercrop under sorghum followed the same trend as its base crop, whereas, yield of cowpea differed compared to the pearl millet base crop. Tied ridging and application of manures (CD or FYM) in combination with inorganic N and P fertiliser can increase the soil water storage and yield of crops compared to traditional flat bed cultivation in rainfed Alfisol and related soils of semi-arid tropics. Similarly BBF and CB land configuration practices could be adopted on Vertisols for better water conservation to increase the soil fertility and productivity of intercropping systems.  相似文献   
138.
139.
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号