首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125篇
  免费   9篇
林业   11篇
农学   12篇
基础科学   1篇
  27篇
综合类   10篇
农作物   10篇
水产渔业   16篇
畜牧兽医   34篇
园艺   5篇
植物保护   8篇
  2023年   2篇
  2022年   5篇
  2021年   4篇
  2020年   8篇
  2019年   4篇
  2018年   4篇
  2017年   8篇
  2016年   3篇
  2015年   7篇
  2014年   8篇
  2013年   7篇
  2012年   8篇
  2011年   2篇
  2010年   11篇
  2009年   7篇
  2008年   3篇
  2007年   5篇
  2006年   6篇
  2005年   2篇
  2004年   4篇
  2003年   1篇
  2002年   4篇
  2001年   2篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1984年   1篇
  1977年   1篇
  1967年   1篇
  1966年   2篇
  1961年   1篇
排序方式: 共有134条查询结果,搜索用时 218 毫秒
11.
12.
A rice bran medium was shown to be suitable for the mass culture of Navicula cuspidata, both in the laboratory and in the yard.  相似文献   
13.
14.
On microscopic examination after experimental infection with Paramphistomum cervi, tissue reactions in the duodenum were more pronounced during early stages of the infection (20th day post-infection (DPI)). Immature parasites were seen migrating to the muscularis layer, and focal infiltration of macrophages and lymphocytes was observed in the lamina propria and in the interstitial tissue of Brunner's gland. At places, there was cystic dilatation of Brunner's gland. At 40 DPI, the parasite was not present in the duodenal sections, and cellular infiltration was more diffuse and consistent. With the passage of time, the tissue reactions and cellular infiltration in the duodenum became less pronounced, but at 80 days parasites were attached to the villi of the rumen. Infiltration of mononuclear cells in the supporting connective tissue of the rumen was also observed. Thus, it is concluded that the immature forms of Paramphistomum cervi caused more severe damage in the duodenal tissue, whereas the adult form inflicted mild tissue damage in the rumen of the experimental kids.  相似文献   
15.
Current widespread and intensive soil degradation in India has been driven by unprecedented levels of population growth, large-scale industrialization, high-yield agriculture, urban sprawl and the spread of human infrastructure. The damage caused to managed and natural systems by soil degradation threatens livelihoods and local services and leads to national socio-economic disruption. Human-induced soil degradation results from land clearing and deforestation, inappropriate agricultural practices, improper management of industrial effluents and wastes, careless management of forests, surface mining, urban sprawl, and ill-planned commercial and industrial development. Of these, inappropriate agricultural practices, including excessive tillage and use of heavy machinery, over-grazing, excessive and unbalanced use of inorganic fertilizers, poor irrigation and water management techniques, pesticide overuse, inadequate crop residue and/or organic carbon inputs, and poor crop cycle planning, account for nearly 40% (121 Mha) of land degradation across India. Globally, human activities related to agriculture contribute to the transgression of four of the nine Planetary Boundaries proposed by Rockström et al. (2009): Climate Change, Biodiversity Integrity, Land-system Change, and altered Phosphorus and Nitrogen Biogeochemical Flows. This review focuses on how knowledge of soil processes in agriculture has developed in India over the past 10 years, and the potential of soil science to meet the objectives of the United Nations' Sustainable Development Goal 2: Zero Hunger (End hunger, achieve food security, improved nutrition and promote sustainable agriculture), using the context of the four most relevant Planetary Boundaries as a framework. Solutions to mitigate soil degradation and improve soil health in different regions using conservation agricultural approaches have been proposed. Thus, in this review we (1) summarize the outputs of recent innovative research in India that has explored the impacts of soil degradation on four Planetary Boundaries (Climate Change, Biodiversity Loss, Land-system Change, and altered Biogeochemical Flows of Phosphorus and Nitrogen) and vice-versa; and (2) identify the knowledge gaps that require urgent attention to inform developing soil science research agendas in India, to advise policy makers, and to support those whose livelihoods rely on the land.  相似文献   
16.
17.
Cage‐pond integration system is a new model for enhancing productivity of pond aquaculture system. A field trial was conducted using African catfish (Clarias gariepinus) and Nile tilapia (Oreochromis niloticus) in cages and carps in earthen ponds. There were four treatments replicated five times: (1) carps in ponds without cage, (2) tilapia at 30 fish m?3 in cage and carps in open pond, (3) catfish at 100 fish m?3 in cage and carps in open pond, (4) tilapia and catfish at 30 and 100 fish m?3, respectively, in separate cages and carps in open pond. The carps were stocked at 1 fish m?2. The cage occupied about 3% of the pond area. The caged tilapia and catfish were fed and the control ponds were fertilized. Results showed that the combined extrapolated net yield was significantly higher (P < 0.05) in the catfish, tilapia and carps integration system (9.4 ± 1.6 t ha?1 year?1) than in the carp polyculture (3.3 ± 0.7 t ha?1 year?1). The net return from the tilapia and carps (6860 US$ ha?1 year?1) and catfish, tilapia and carps integration systems (6668 US$ ha?1 year?1) was significantly higher than in the carp polyculture (1709 US$ ha?1 year?1) (P < 0.05). This experiment demonstrated that the cage‐pond integration of African catfish and Nile tilapia with carps is the best technology to increase production; whereas integration of tilapia and carp for profitability.  相似文献   
18.
Ralstonia solanacearum is a phytopathogenic bacterium that colonizes the xylem vessels of host plants leading to a lethal wilt disease. Although several studies have investigated the virulence of R. solanacearum on adult host plants, infection studies of this pathogen on the seedling stages of hosts are less common. In a preliminary observation, inoculation of R. solanacearum F1C1 on 6‐ to 7‐day‐old tomato seedlings by a simple leaf‐clip strategy resulted in a lethal pathogenic condition in seedlings that eventually killed these seedlings within a week post‐inoculation. This prompted testing of the effect of this inoculation technique in seedlings from different cultivars of tomato and similar results were obtained. Colonization and spread of the bacteria throughout the infected seedlings was demonstrated using gus‐tagged R. solanacearum F1C1. The same method of inoculating tomato seedlings was used with R. solanacearum GMI1000 and independent mutants of R. solanacearum GMI1000, deficient in the virulence genes hrpB, hrpG, phcA and gspD. Wildtype R. solanacearum GMI1000 was found to be virulent on tomato seedlings, whereas the mutants were found to be non‐virulent. This leaf‐clip technique, for inoculation of tomato seedlings, has the potential to be a valuable approach, saving time, space, labour and costs.  相似文献   
19.
Support vector machine (SVM) model is employed and tested for the soil surface roughness classification. SVM is calibrated (trained) and tested with the experimentally obtained data. The experimentally data is obtained by using X-band (9.5 GHz) scatterometer for two soil surface roughness 3.78 cm and 1.83 cm at constant soil surface moisture equal to 22.80%. The measurement of the scattering coefficient was carried out over a range of incidence angle from 20° to 70° at the step of 5° for both the HH and vv polarization. The performance of the SVM model is evaluated from the outcome classification result on trained data set and test data set. Radial Gaussian kernel function results 100% correct Classification and identification of soil surface roughness both in training and validation phase. SVM is a proficient technique for soil surface roughness classification by such experimentation and have numerous of advantages over artificial neural network (ANN) based approaches and other theoretical approaches as its less complexity and less time consumption ability.  相似文献   
20.
The effect of inoculum concentrations, temperature, relative humidity (RH), incubation period and leaf age on sporulation of Pestalotiopsis disseminata and the development of grey blight disease on som (Persea bombycina Kost.) were studied in controlled environmental conditions. These factors had a significant role on spore germination and germ tube development of P. disseminata, the causal organism of the disease. The optimum inoculum concentration of the pathogen were found to be 1 × 107 spores ml−1 for maximum infection percentage. A nonlinear relationship was found between temperature and germination percentage of spores at a given relative humidity (RH). However, 25 °C (±2) temperature and 70% RH were the optimum parameters for better spore germination of the pathogen. Young leaves (leaf no. 1–4 from the top) were more susceptible for development of the diseases in a controlled environment than the older leaves. The germination of spores started at 8 h of incubation and gradually increased up to 20 h (maximum). The disease severity was favoured in the optimum range of temperature (25 ± 2 °C) and RH (70%) which had a combined effect. These epidemiological parameters could help in the management practices of the disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号