首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   272篇
  免费   32篇
林业   17篇
农学   4篇
  55篇
综合类   16篇
农作物   9篇
水产渔业   14篇
畜牧兽医   162篇
园艺   1篇
植物保护   26篇
  2024年   1篇
  2023年   4篇
  2022年   2篇
  2021年   6篇
  2020年   19篇
  2019年   18篇
  2018年   10篇
  2017年   16篇
  2016年   14篇
  2015年   10篇
  2014年   21篇
  2013年   28篇
  2012年   37篇
  2011年   22篇
  2010年   13篇
  2009年   9篇
  2008年   10篇
  2007年   19篇
  2006年   6篇
  2005年   5篇
  2004年   6篇
  2003年   6篇
  2002年   9篇
  2001年   1篇
  2000年   5篇
  1998年   1篇
  1995年   1篇
  1994年   1篇
  1990年   1篇
  1979年   1篇
  1973年   2篇
排序方式: 共有304条查询结果,搜索用时 343 毫秒
181.
Aquaculture International - Information on growth dynamics of koi grown long-term in recirculating aquaculture systems (RAS) is lacking. The objective of this study was to establish baseline...  相似文献   
182.
Cholesterinic granulomas are mass‐like lesions that form at the choroid plexus of the ventricular system. Large cholesterinic granulomas within the lateral ventricles have been reported to cause severe neurological signs. However, little data are available about their prevalence or appearance in the overall population. The objective was to report the prevalence of presumed cholesterinic granulomas on CT in a population of horses, and investigate associations between presumed cholesterinic granuloma presence, lateral ventricle size, age, and neurological signs. The study was cross sectional, CT scans of the head were assessed for presumed cholesterinic granuloma presence and size, and lateral ventricle height. Computed tomography findings and clinical information were compared using nonparametric testing. Computed tomography scans of 139 horses were included. Presumed cholesterinic granulomas were found in 22 horses (15.8%), nine were unilateral and 13 bilateral. A significant increase in prevalence was observed with age (< .0001), with 38% of horses over 15 years old affected. The median volume of presumed cholesterinic granulomas was 242 mm3 with a range from 51 to 2420 mm3. The mean lateral ventricle height was significantly increased in horses with presumed cholesterinic granulomas present (P = .004), with a median of 7.3 mm compared to 4.9 mm without. Neurological signs were not associated with presumed cholesterinic granuloma presence or lateral ventricle height. Fourth ventricle mineralizations were found in seven horses, which may represent cholesterinic granulomas. In conclusion, presumed cholesterinic granulomas occurred in a large proportion of the examined population and are associated with increased lateral ventricle dilation and advanced age.  相似文献   
183.
184.
In a screen of 1800 plant and fungal extracts for antiplasmodial, antitrypanosomal, and leishmanicidal activity, the n-hexane extract of Chrysanthemum cinerariifolium (Trevir.) Vis. flowers showed strong activity against Plasmodium falciparum. We isolated the five pyrethrins [i.e., pyrethrin II (1), jasmolin II (2), cinerin II (3), pyrethrin I (4), and jasmolin I (5)] from this extract. These were tested together with 15 synthetic pyrethroids for their activity against P. falciparum and Trypanosoma brucei rhodesiense and for cytotoxicity in rat myoblast L6 cells. The natural pyrethrins showed antiplasmodial activity with IC(50)s between 4 and 12 μM, and antitrypanosomal activity with IC(50)s from 7 to 31 μM. The pyrethroids exhibited weaker antiplasmodial and antitrypanosomal activity than the pyrethrins. Both pyrethrins and pyrethroids showed moderate cytotoxicity against L6 cells. Pyrethrin II (1) was the most selective antiplasmodial compound, with a selectivity index of 24.  相似文献   
185.
Neurons in the human central nervous system (CNS) are unable to regenerate, as a result of both an inhibitory environment and their inherent inability to regrow. In contrast, the CNS environment in fish is permissive for growth, yet some neurons still cannot regenerate. Fish thus offer an opportunity to study molecules that might surmount the intrinsic limitations they share with mammals, without the complication of an inhibitory environment. We show by in vivo imaging in zebrafish that post-injury application of cyclic adenosine monophosphate can transform severed CNS neurons into ones that regenerate and restore function, thus overcoming intrinsic limitations to regeneration in a vertebrate.  相似文献   
186.
187.
188.
The objective of this study was to evaluate the behavior and performance of sows and piglets kept in different types of farrowing rooms: conventional farrowing room with jugglers and cages (CFR), CFR with a heated floor for the piglets alongside the sows (CFR+HF) and semi‐outdoor farrowing room without a cage or heating floor but with access to a fenced field (SFR) during the tropical winter. Twenty‐seven multiparous sows were allocated in three treatments and nine repetitions during 21 days. The relative humidity was higher at CFR and CFR+HF. The temperature of thigh and chest in contact with the floor and the neck were higher (P < 0.01) in conventional systems. Sows maintained in the CFR spent (P < 0.01) more time feeding and drinking. The heating floor increased (P < 0.01) the nursing behavior but did not affect (P > 0.09) the sows’ and piglets’ performances. SFR decreased the backfat thickness (P = 0.03) and lactation efficiency, but did not affect milk production (P > 0.12) or piglet performance (P > 0.09). It is concluded that during tropical winter, conventional farrowing systems ensure better piglet performance compared to SFR but this last seems to improve the behavior of sows. The heating floor favors nursing and does not affect the welfare of sows.  相似文献   
189.
Differences in the isotopic signature of organic matter between soil fractions are indicative of transformation and ageing processes. Here we show that with increasing microbial transformation measured by δ15N, there is a concomitant increase in carbon age as measured by 14C. The age of the soil's heavy fraction further increases with microbial utilization, indicating that stabilized OM ages yet continues to be reused.  相似文献   
190.
Superovulation would potentially increase the efficiency and decrease the cost of embryo transfer by increasing embryo collection rates. Other potential clinical applications include improving pregnancy rates from frozen semen, treatment of subfertility in stallions and mares, and induction of ovulation in transitional mares. The objective of this study was to evaluate the efficacy of purified equine follicle stimulating hormone (eFSH; Bioniche Animal Health USA, Inc., Athens, GA) in inducing superovulation in cycling mares. In the first experiment, 49 normal, cycling mares were used in a study at Colorado State University. Mares were assigned to 1 of 3 groups: group 1, controls (n = 29) and groups 2 and 3, eFSH-treated (n = 10/group). Treated mares were administered 25 mg of eFSH twice daily beginning 5 or 6 days after ovulation (group 2). Mares received 250 (of cloprostenol on the second day of eFSH treatment. Administration of eFSH continued until the majority of follicles reached a diameter of 35 mm, at which time a deslorelin implant was administered. Group 3 mares (n = 10) received 12 mg of eFSH twice daily starting on day 5 or 6. The treatment regimen was identical to that of group 2. Mares in all 3 groups were bred with semen from 1 of 4 stallions. Pregnancy status was determined at 14 to 16 days after ovulation.In experiment 2, 16 light-horse mares were used during the physiologic breeding season in Brazil. On the first cycle, mares served as controls, and on the second cycle, mares were administered 12 mg of eFSH twice daily until a majority of follicles were 35 mm in diameter, at which time human chorionic gonadotropin (hCG) was administered. Mares were inseminated on both cycles, and embryo collection attempts were performed 7 or 8 days after ovulation.Mares treated with 25 mg of eFSH developed a greater number of follicles (35 mm) and ovulated a greater number of follicles than control mares. However, the number of pregnancies obtained per mare was not different between control mares and those receiving 25 mg of eFSH twice daily. Mares treated with 12 mg of eFSH and administered either hCG or deslorelin also developed more follicles than untreated controls. Mares receiving eFSH followed by hCG ovulated a greater number of follicles than control mares, whereas the number of ovulations from mares receiving eFSH followed by deslorelin was similar to that of control mares. Pregnancy rate for mares induced to ovulate with hCG was higher than that of control mares, whereas the pregnancy rate for eFSH-treated mares induced to ovulate with deslorelin did not differ from that of the controls. Overall, 80% of mares administered eFSH had multiple ovulations compared with 10.3% of the control mares.In experiment 2, the number of large follicles was greater in the eFSH-treated cycle than the previous untreated cycle. In addition, the number of ovulations during the cycle in which mares were treated with eFSH was greater (3.6) than for the control cycle (1.0). The average number of embryos recovered per mare for the eFSH cycle (1.9 ± 0.3) was greater than the embryo recovery rate for the control cycle (0.5 ± 0.3).In summary, the highest ovulation and the highest pregnancy and embryo recovery rates were obtained after administration of 12 mg of eFSH twice daily followed by 2500 IU of hCG. Superovulation with eFSH increased pregnancy rate and embryo recovery rate and, thus, the efficiency of the embryo transfer program.

Introduction

Induction of multiple ovulations or superovulation has been an elusive goal in the mare. Superovulation would potentially increase the efficiency and decrease the cost of embryo transfer by increasing embryo collection rates.[1 and 2] Superovulation also has been suggested as a critical requirement for other types of assisted reproductive technology in the horse, including oocyte transfer and gamete intrafallopian transfer. [2 and 3] Unfortunately, techniques used successfully to superovulate ruminants, such as administration of porcine follicle stimulating hormone and equine chorionic gonadotropin have little effect in the mare. [4 and 5]The most consistent therapy used to induce multiple ovulations in mares has been administration of purified equine pituitary gonadotropins. Equine pituitary extract (EPE) is a purified gonadotropin preparation containing approximately 6% to 10% LH and 2% to 4% FSH.[6] EPE has been used for many years to induce multiple ovulations in mares [7, 8 and 9] and increase the embryo recovery rate from embryo transfer donor mares. [10] Recently, a highly purified equine FSH product has become available commercially.The objectives of this study were to evaluate the efficacy of purified eFSH in inducing superovulation in cycling mares and to determine the relationship between ovulation rate and pregnancy rate or embryo collection rate in superovulated mares.

Materials and methods

Experiment 1

Forty-nine normally cycling mares, ranging in age from 3 to 12 years, were used in a study at Colorado State University. Group 1 (control) mares (n = 29) were examined daily when in estrus by transrectal ultrasonography. Mares were administered an implant containing 2.1 mg deslorelin (Ovuplant, Ft. Dodge Animal Health, Ft. Dodge, IA) subcutaneously in the vulva when a follicle 35 mm in diameter was detected. Mares were bred with frozen semen (800 million spermatozoa; minimum of 30% progressive motility) from 1 of 4 stallions 33 and 48 hours after deslorelin administration. The deslorelin implants were removed after detection of ovulation.[11] Pregnancy status was determined at 14 and 16 days after ovulation.Group 2 mares (n = 10) were administered 25 mg of eFSH (Bioniche Animal Health USA, Inc., Athens, GA) intramuscularly twice daily beginning 5 or 6 days after ovulation was detected. Mares received 250 g cloprostenol (Estrumate, Schering-Plough Animal Health, Omaha, NE) intramuscularly on the second day of eFSH treatment. Administration of eFSH continued until a majority of follicles reached a diameter of 35 mm, at which time a deslorelin implant was administered. Mares were subsequently bred with the same frozen semen used for control mares, and pregnancy examinations were performed as described above.Group 3 mares (n = 10) received 12 mg of eFSH twice daily starting 5 or 6 days after ovulation and were administered 250 μg cloprostenol on the second day of treatment. Mares were randomly selected to receive either a deslorelin implant (n = 5) or 2500 IU of human chorionic gonadotropin (hCG) intravenously (n = 5) to induce ovulation when a majority of follicles reached a diameter of 35 mm. Mares were bred with frozen semen and examined for pregnancy as described above.

Experiment 2

Sixteen cycling light-horse mares were used during the physiologic breeding season in Brazil. Reproductive activity was monitored by transrectal palpation and ultrasonography every 3 days during diestrus and daily during estrus. On the first cycle, mares were administered 2500 IU hCG intravenously once a follicle 35 mm was detected. Mares were subsequently inseminated with pooled fresh semen from 2 stallions (1 billion motile sperm) daily until ovulation was detected. An embryo collection procedure was performed 7 days after ovulation. Mares were subsequently administered cloprostenol, and eFSH treatment was initiated. Mares received 12 mg eFSH twice daily until a majority of follicles were 35 mm in diameter, at which time hCG was administered. Mares were inseminated and embryo collection attempts were performed as described previously.

Statistical analysis

In experiment 1, 1-way analysis of variance with F protected LSD was used to analyze quantitative data. Pregnancies per ovulation were analyzed by x2 analysis. In experiment 2, number of large follicles, ovulation rate, and embryo recovery rate were compared by Student,'s t-test. Data are presented as the mean S.E.M. Differences were considered to be statistically significant at p < .05, unless otherwise indicated.

Results

In experiment 1, mares treated with 25 mg eFSH twice daily developed a greater number of follicles 35 mm in diameter (p = .001) and ovulated a greater number of follicles (p = .003) than control mares (Table 1). However, the number of pregnancies obtained per mare was not significantly different between the control group and the group receiving 25 mg eFSH (p = .9518). Mares treated with 12 mg eFSH and administered either hCG or deslorelin to induce ovulation also developed more follicles 35 mm (p = .0016 and .0003, respectively) than untreated controls. Mares receiving eFSH followed by hCG ovulated a greater number of follicles (p = .003) than control mares, whereas the number of ovulations for mares receiving eFSH followed by deslorelin was similar to that of control mares (p = .3463). Pregnancy rate for mares induced to ovulate with hCG was higher (p = .0119) than that of control mares, whereas the pregnancy rate for eFSH-treated mares induced to ovulate with deslorelin did not differ from that of controls (p = .692). Pregnancy rate per ovulation was not significantly different between control mares (54.5%) and mares treated with eFSH followed by hCG (52.9%). The lowest pregnancy rate per ovulation was for mares stimulated with 25 mg eFSH and induced to ovulate with deslorelin. The mean number of days mares were treated with 25 mg or 12 mg of eFSH was 7.8 ± 0.4 and 7.5 ± 0.5 days, respectively. Overall, 80.0% of mares administered eFSH had multiple ovulations compared with 10.3% of control mares.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号