首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   130篇
  免费   14篇
林业   6篇
农学   5篇
  14篇
综合类   13篇
农作物   3篇
水产渔业   5篇
畜牧兽医   81篇
植物保护   17篇
  2021年   3篇
  2020年   3篇
  2019年   4篇
  2018年   6篇
  2017年   5篇
  2016年   7篇
  2015年   3篇
  2014年   4篇
  2013年   9篇
  2012年   2篇
  2011年   6篇
  2010年   5篇
  2009年   7篇
  2008年   8篇
  2007年   3篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   4篇
  1997年   2篇
  1996年   6篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1984年   3篇
  1978年   1篇
  1975年   3篇
  1974年   1篇
  1973年   2篇
  1970年   1篇
  1967年   1篇
  1952年   1篇
  1948年   5篇
  1947年   2篇
  1930年   2篇
  1926年   1篇
排序方式: 共有144条查询结果,搜索用时 0 毫秒
141.
Three somatic hybrids obtained by fusion of protoplasts from Brassica oleracea and B. campestris were analyzed by gel electrophoresis and compared with their respective parental species. By comparing multiple forms of esterases and phosphorylases it could be demonstrated that in all cases the hybrid plants contained one or more enzymes from each parent.  相似文献   
142.
Analyses of fossil mammal faunas from 2945 localities in the United States demonstrate that the geographic ranges of individual species shifted at different times, in different directions, and at different rates in response to late Quaternary environmental fluctuations. The geographic pattern of faunal provinces was similar for the late Pleistocene and late Holocene, but differing environmental gradients resulted in dissimilar species composition for these biogeographic regions. Modern community patterns emerged only in the last few thousand years, and many late Pleistocene communities do not have modern analogs. Faunal heterogeneity was greater in the late Pleistocene.  相似文献   
143.
A method was developed to determine organophosphorus pesticides (OPs) in dried ground ginseng root. Pesticides were extracted from the sample using acetonitrile/water saturated with salts, followed by solid-phase dispersive cleanup, and analyzed by capillary gas chromatography with electron ionization mass spectrometry in selective ion monitoring mode (GC-MS/SIM) and flame photometric detection (GC-FPD) in phosphorus mode. The detection limits for most of the pesticides were 0.025-0.05 microg/g using GC-FPD but were analyte-dependent for GC-MS/SIM, ranging from 0.005 to 0.50 microg/g. Quantitation was determined from 0.050 to 5.0 microg/g with r 2 > 0.99 for a majority of the pesticides using both detectors. Recovery studies were performed by fortifying the dried ground ginseng root samples to concentrations of 0.025, 0.1, and 1.0 microg/g, resulting in recoveries of >90% for most pesticides by GC-FPD. Lower (<70%) and higher (>120%) recoveries were most likely from complications of pesticide lability or volatility, matrix interference, or inefficient desorption from the solid-phase sorbents. There was difficulty in analyzing the ginseng samples for the OPs using GC-MS at the lower fortification levels for some of the OPs due to lack of confirmation. GC-FPD and GC-MS/SIM complement each other in detecting the OPs in dried ground ginseng root samples. This procedure was shown to be effective and was applied to the analysis of OPs in ginseng root samples. One particular sample, a ground and dried American ginseng (Panax quinquefolius) root sample, was found to contain diazinon quantified at approximately 25 microg/kg by external calibration using matrix-matched standards or standard addition using both detectors. The advantage of using both detectors is that confirmation can be achieved using GC-MS, whereas the use of a megabore column in GC-FPD can be used to quantitate some of the nonpolar OPs without the use of matrix-matched standards or standard addition.  相似文献   
144.
A greenhouse rhizobox experiment was carried out to investigate the fate and turnover of 13C‐ and 15N‐labeled rhizodeposits within a rhizosphere gradient from 0–8 mm distance to the roots of wheat. Rhizosphere soil layers from 0–1, 1–2, 2–3, 3–4, 4–6, and 6–8 mm distance to separated roots were investigated in an incubation experiment (42 d, 15°C) for changes in total C and N and that derived from rhizodeposition in total soil, in soil microbial biomass, and in the 0.05 M K2SO4–extractable soil fraction. CO2‐C respiration in total and that derived from rhizodeposition were measured from the incubated rhizosphere soil samples. Rhizodeposition C was detected in rhizosphere soil up to 4–6 mm distance from the separated roots. Rhizodeposition N was only detected in the rhizosphere soils up to 3–4 mm distance from the roots. Microbial biomass C and N was increased with increasing proximity to the separated roots. Beside 13C and 15N derived from rhizodeposits, unlabeled soil C and N (native SOM) were incorporated into the growing microbial biomass towards the roots, indicating a distinct acceleration of soil organic matter (SOM) decomposition and N immobilization into the growing microbial biomass, even under the competition of plant growth. During the soil incubation, microbial biomass C and N decreased in all samples. Any decrease in microbial biomass C and N in the incubated rhizosphere soil layers is attributed mainly to a decrease of unlabeled (native) C and N, whereas the main portion of previously incorporated rhizodeposition C and N during the plant growth period remained immobilized in the microbial biomass during the incubation. Mineralization of native SOM C and N was enhanced within the entire investigated rhizosphere gradient. The results indicate complex interactions between substrate input derived from rhizodeposition, microbial growth, and accelerated C and N turnover, including the decomposition of native SOM (i.e., rhizosphere priming effects) at a high spatial resolution from the roots.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号