首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   878篇
  免费   40篇
  国内免费   1篇
林业   87篇
农学   26篇
  130篇
综合类   23篇
农作物   39篇
水产渔业   152篇
畜牧兽医   387篇
园艺   7篇
植物保护   68篇
  2024年   1篇
  2023年   2篇
  2022年   22篇
  2021年   43篇
  2020年   25篇
  2019年   12篇
  2018年   21篇
  2017年   20篇
  2016年   39篇
  2015年   32篇
  2014年   53篇
  2013年   69篇
  2012年   51篇
  2011年   56篇
  2010年   30篇
  2009年   36篇
  2008年   62篇
  2007年   64篇
  2006年   67篇
  2005年   53篇
  2004年   48篇
  2003年   27篇
  2002年   39篇
  2001年   18篇
  2000年   12篇
  1999年   3篇
  1998年   8篇
  1995年   4篇
  1985年   1篇
  1975年   1篇
排序方式: 共有919条查询结果,搜索用时 15 毫秒
91.
The developmental potential of nuclei from a bovine mammary epithelial cell line (BMEC) in nuclear transfer was investigated. For nuclear transfer donors, BMEC cells (passage 15) were cultured for 4–5 days after seeding at cell densities of 1.0 × 105 cells/cm2 (high‐density group) or 0.8 × 104 cells/cm2 (low‐density group). First, the effective electric stimulation for fusion of enucleated oocytes with BMEC cells was examined. Fusion rates reached maximum with two DC pulses of 30 V/150 µm for 20 µs in the high‐density group and with two DC pulses of 25 V/150 µm for 10 µs in the low‐density group. The fusion rate (37.5%) in the high‐density group was significantly (P < 0.005) lower than in the low‐density group (71.4%). Second, the in vitro developmental potential of nuclear transfer embryos derived from BMEC cells was examined. In the high‐density and low‐density groups, 18.8% and 24.1% of fused oocytes, respectively, developed to blastocyst stage. The results of this study indicate that nuclei from BMEC cells support the development of nuclear transfer embryos to the blastocyst stage and that the efficiency of oocyte–cell fusion is affected by the culture conditions of the donor BEMC cells before nuclear transfer.  相似文献   
92.
Fisheries Science - In aquaculture, periodic measurement of fish body size is required to suitably assess growth progress. The aim of this study is to monitor the growth of free-swimming red sea...  相似文献   
93.
The major digestive enzymes in Pacific bluefin tuna Thunnus orientalis larvae were characterized, and the physiological characteristics of the enzymes during early ontogeny were clarified using biochemical and molecular approaches. The maximum activity of trypsin (Try), chymotrypsin (Ct) and amylase (Amy) was observed at pH 6–11, 8–11 and 6–9, respectively. Maximum activity of Try, Ct and Amy occurred at 50 °C, that of lipase (Lip) was at 60 °C and that of pepsin (Pep) was at 40–50 °C. These pH and thermal profiles were similar to those for other fish species but differed from those previously reported for adult bluefin tuna. Enzyme activity for all enzymes assayed was found to decrease at high temperatures (Try, Ct, Amy and Pep: 50 °C; Lip: 40 °C), which is similar to findings for other fish species with one marked exception—increased Try activity was observed at 40 °C. Lip activity appeared to be dependent on bile salts under our assay conditions, resulting in a significant increase in activity in the presence of bile salts. Ontogenetic changes in pancreatic digestive enzymes showed similar gene expression patterns to those of other fish species, whereas marked temporal increases in enzyme activities were observed at 10–12 days post hatching (dph), coinciding with previously reported timing of the development of the pyloric caeca in bluefin tuna larvae. However, complete development of digestive function was indicated by the high pep gene expression from 19 dph, which contradicts the profile of Pep activity and previously reported development timing of the gastric gland. These findings contribute to the general knowledge of bluefin tuna larval digestive system development.  相似文献   
94.
In legumes, Nod-factor signaling by rhizobia initiates the development of the nitrogen-fixing nodule symbiosis, but the direct cell division stimulus that brings about nodule primordia inception in the root cortex remains obscure. We showed that Lotus japonicus plants homozygous for a mutation in the HYPERINFECTED 1 (HIT1) locus exhibit abundant infection-thread formation but fail to initiate timely cortical cell divisions in response to rhizobial signaling. We demonstrated that the corresponding gene encodes a cytokinin receptor that is required for the activation of the nodule inception regulator Nin and nodule organogenesis.  相似文献   
95.
Dehydrins are proteins associated with conditions affecting the water status of plant cells, such as drought, salinity, freezing and seed maturation. Although the function of dehydrins remains unknown, it is hypothesized that they stabilize membranes and macromolecules during cellular dehydration. Red-osier dogwood (Cornus sericea L.), an extremely freeze-tolerant woody plant, accumulates dehydrin-like proteins during cold acclimation and the presence of these proteins is correlated with increased freeze tolerance (Karlson 2001, Sarnighausen et al. 2002, Karlson et al. 2003). Our objective was to determine the location of dehydrins in cold-acclimated C. sericea stems in an effort to provide insight into their potential role in the freeze tolerance of this extremely cold hardy species. Abundant labeling was observed in the nucleus and cytoplasm of cold-acclimated C. sericea stem cells. In addition, labeling was observed in association with plasmodesmata of cold-acclimated vascular cambium cells. The unique association of dehydrin-like proteins with plasmodesmata has not been reported previously.  相似文献   
96.
ABSTRACT:   The cysts of toxic dinoflagellate Alexandrium tamarense are the seed population for the bloom responsible for paralytic shellfish poisoning (PSP). However, it is impossible to identify the Alexandrium spp. cyst on the basis of morphological features. In this study, we prepared A. tamarense cysts by sexual conjugation in laboratory conditions and developed an efficient DNA extraction method for polymerase chain reaction (PCR) assay. Using the A. tamarense cysts, we established the identification and quantification method showing the species specificity and the high sensistivity for A. tamarense cysts using real-time PCR. This assay was also able to detect and quantify the A. tamarense cysts accurately when mixed with excess cysts of A. catenella (Whedon and Kofoid) Balech prepared by conjugation experiment.  相似文献   
97.
In vitro fermentation and in vivo feeding experiments were conducted to characterize the effects of soybean (Glycine max) husk on the fecal fermentation metabolites and microbiota of dogs. An in vitro fermentation study using feces from three Toy Poodle dogs (6.5 ± 3.5 months in age and 2.9 ± 0.4 kg in body weight) revealed that the fecal inoculum was able to ferment soybean husk (supplemented at 0.01 g/mL culture) and increased levels of short chain fatty acids (SCFA) and Bifidobacterium, irrespective of pre‐digestion of the husk by pepsin and pancreatin. In a feeding experiment, four Shiba dogs (7–48 months in age and 7.5 ± 1.7 kg in body weight) fed a commercial diet supplemented with 5.6% soybean husk showed an increase in SCFA, such as acetate and butyrate, and lactate, and a decrease in indole and skatole in the feces compared to those fed a 5.6% cellulose diet. Real‐time PCR assay showed that soybean husk supplementation stimulated the growth of lactobacilli, Clostridium cluster IV including Faecalibacterium prausnitzii, Clostridium cluster XIVa, Bacteroides‐Prevotella‐Porphyromonas group but inhibited the growth of Clostridium cluster XI. Both in vitro and in vivo experiments indicated that soybean husk supplementation improves gastrointestinal health through optimization of beneficial organic acid production and increase of beneficial bacteria. Therefore, soybean husk is suggested to be applicable as a functional fiber in the formulation of canine diets.  相似文献   
98.
Epigenetic alteration is an emerging paradigm underlying the long-term effects of chemicals on gene functions. Various chemicals, including organophosphate insecticides and heavy metals, have been detected in the human fetal environment. Epigenetics by DNA methylation and histone modifications, through dynamic chromatin remodeling, is a mechanism for genome stability and gene functions. To investigate whether such environmental chemicals may cause epigenetic alterations, we studied the effects of selected chemicals on morphological changes in heterochromatin and DNA methylation status in mouse ES cells (ESCs). Twenty-five chemicals, including organophosphate insecticides, heavy metals and their metabolites, were assessed for their effect on the epigenetic status of mouse ESCs by monitoring heterochromatin stained with 4¢,6-diamino-2-phenylindole (DAPI). The cells were surveyed after 48 or 96 h of exposure to the chemicals at the serum concentrations of cord blood. The candidates for epigenetic mutagens were examined for the effect on DNA methylation at genic regions. Of the 25 chemicals, five chemicals (diethyl phosphate (DEP), mercury (Hg), cotinine, selenium (Se) and octachlorodipropyl ether (S-421)) caused alterations in nuclear staining, suggesting that they affected heterochromatin conditions. Hg and Se caused aberrant DNA methylation at gene loci. Furthermore, DEP at 0.1 ppb caused irreversible heterochromatin changes in ESCs, and DEP-, Hg- and S-421-exposed cells also exhibited impaired formation of the embryoid body (EB), which is an in vitro model for early embryos. We established a system for assessment of epigenetic mutagens. We identified environmental chemicals that could have effects on the human fetus epigenetic status.  相似文献   
99.
The rumen microbiota comprises a vast range of bacterial taxa, which may affect the production of high-quality meat in Japanese Black cattle. The aim of this study was to identify core rumen microbiota in rumen fluid samples collected from 74 Japanese Black cattle raised under different dietary conditions using 16S rRNA gene amplicon sequencing. In the rumen of fattening Japanese Black cattle, 10 bacterial taxa, showing >1% average relative abundance and >95% prevalence, irrespective of the dietary conditions and the fattening periods, were identified as the core rumen bacterial taxa, which accounted for approximately 80% of the rumen microbiota in Japanese Black cattle. Additionally, population dynamics of the core rumen bacterial taxa revealed two distinct patterns: Prevotella spp. and unclassified Bacteroidales decreased in the mid-fattening period, whereas unclassified Clostridiales, unclassified Ruminococcaceae, Ruminococcus spp., and unclassified Christensenellaceae increased during the same period. Therefore, the present study reports the wide distribution of the core rumen bacterial taxa in Japanese Black cattle, and the complementary nature of the population dynamics of these core taxa, which may ensure stable rumen fermentation during the fattening period.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号