首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   251篇
  免费   18篇
林业   21篇
农学   7篇
基础科学   7篇
  54篇
综合类   8篇
农作物   32篇
水产渔业   35篇
畜牧兽医   81篇
园艺   6篇
植物保护   18篇
  2023年   2篇
  2022年   9篇
  2021年   13篇
  2020年   12篇
  2019年   16篇
  2018年   24篇
  2017年   25篇
  2016年   14篇
  2015年   5篇
  2014年   11篇
  2013年   14篇
  2012年   13篇
  2011年   15篇
  2010年   18篇
  2009年   7篇
  2008年   13篇
  2007年   8篇
  2006年   4篇
  2005年   4篇
  2004年   9篇
  2003年   1篇
  2002年   4篇
  2001年   3篇
  2000年   4篇
  1998年   4篇
  1997年   4篇
  1996年   4篇
  1995年   3篇
  1994年   1篇
  1989年   1篇
  1985年   1篇
  1977年   1篇
  1974年   1篇
  1959年   1篇
排序方式: 共有269条查询结果,搜索用时 15 毫秒
11.
Effects of NaCl, KC1, and CaCl2 alone, and in combinations of NaCl/KCl and NaCl/CaCl2 on growth and ion uptake by ‘Kallar'grass in soil and in solution cultures were studied. In soil up to 150 mM NaCl and KCl had little effect on growth but CaCl2 depressed growth strongly. Dry weights in 150 mM NaCl/KCl decreased but remained little affected in NaCl/CaCl2. Plant response to Na+ was little affected by Ca++ or K+ and no interactions between Na+ and Ca++ or Na+ and K+ were observed. Plant tissue exhibited a strong selectivity for K+ over Na+ Concentrations of Na and Cl in the tops exceeded those in the roots. Leaf transections are presented providing some information on the tissue anatomy.  相似文献   
12.
Abstract

Groups of “Kallar”; grass plants were subjected to various treatments of 100 mM NaCl simultaneously labelled with 22Na+ and 36Cl?. On the basis of the specific activity, the distribution of Na and Cl? in the tissue was followed during and after treatment, i.e. after transfer of some groups to an identical but inactive solution. Sequential collections of leaf washes showed that both Na and Cl? were extruded at a somewhat constant rate. Leaf sheaths accumulated more Na+ and Cl? than the leaf blades and the amounts of Na+ and Cl? in the leaf sheaths as a percentage of their total plant content (i.e. 28% and 31%) approximated the amounts of Na and Cl? extruded by the leaves (i.e. 23%). Moreover, almost equivalent amounts of Na+ (21%) and Cl? (29%) were removed by root efflux which continued even several days after transfer of the plants to the inactive, saline solution. Part of the Na+ and Cl? was retranslocated from the tops to the roots and was attributed to phloem export.

Tolerance of Kallar grass to NaCl was thus related to preventing the tissue from accumulating high concentration by extrusion of both Na+ and Cl? by the leaves and their efflux by the roots in addition to an equivalent retention in the leaf sheaths.  相似文献   
13.
We conducted field experiments in two locations to investigation of organic and chemical fertilizer on soil characteristics and essential oil yield in dragonhead. Results showed that the inoculation of bacteria with the seeds in location 1 and also the inoculation of bacteria with the seeds of G1 genotype in location 2 than G2 genotype increased the total soil nitrogen content. The application of azocompost and its inoculation with urea's chemical fertilizer comparing to chemical control, it increase the soil carbon content. Results indicated that by increasing azocompost content with a linear procedure bulk density increased. Results showed that application of 100% azocompost treatment had the highest electrical conductivity in the soil. According to the results, the main effect of genotype and fertilizer regime and also two-way interaction (bacteria × fertilizer) had significant relationship with essential oil yield.  相似文献   
14.
Irrigation of arable land with contaminated sewage waters leads to the accumulation of trace metals in soils with subsequent phyto‐/zootoxic consequences. In this study, biochar derived from cotton sticks was used to amend an agricultural silt‐loam soil that had been previously irrigated with trace metal contaminated sewage waters. Metal accumulation and toxicity to spinach (Spinacia oleracea) and fenugreek (Trigonella corniculata) was investigated by measuring concentrations of Cd and Ni in plant tissues and various photosynthetic and biochemical activities of plants. Positive impacts of biochar on both spinach and fenugreek were observed in terms of biomass production that increased from 29% to 36% in case of spinach, while for fenugreek this increase was 32% to 36%. In the control treatment there was an increase in malondialdihyde, soluble sugar, and ascorbic acid contents, indicating heavy metal stress. Biochar applications increased soluble proteins and amino acids in plants and reduced the uptake of Cd from 5.42 mg kg?1 at control to 3.45 mg kg?1 at 5% biochar amended soil and Ni (13.8 mg kg?1 to 7.3 mg kg?1 at 5% biochar) by the spinach plants. In fenugreek, the Cd was reduced from 7.72 mg kg?1 to 3.88 mg kg?1 and reduction in Ni was from 15.45 mg kg?1 to 9.46 mg kg?1 at 5% biochar treated soil, reducing the possibility of transfer up the food chain. This study demonstrates that the use of biochar made from cotton‐sticks, as an amendment to arable soils that have received contaminated irrigation water, could improve plant growth and decrease Cd and Ni uptake to crops, alleviating some of the negative impacts of using sewage waters on arable land.  相似文献   
15.

For effective varietal improvement of horticultural crops peach (Prunus persica) and nectarine (Prunus persica var. nucipersica), information about their population structure and genetic relatedness plays an important role. In this study we used retrotransposon-based markers (iPBS) to estimate the genetic diversity and population structure of 48 peach and nectarine genotypes from various distinct geographical regions of Punjab and Khyber Pakhtunkhwa, Pakistan. A total of 461 alleles were identified from PCR amplicons derived from nine iPBS primer pairs with an average of 8.5 alleles/locus. Among all four groups the genotypes collected from Swat and Hunza had the highest and the lowest expected heterozygosity, unbiased expected heterozygosity and Shannon’s information index, respectively. We constructed a Neighbour-Joining dendrogram and performed principal coordinate analysis based on the distance matrices, and both forms of analysis grouped the 48 genotypes into two distinct clusters. The STRUCTURE software distributed the forty-eight genotypes into two main populations (k?=?2) indicating a low diversity between genotypes collected from Chakwal, Swat, Mansehra and Hunza.

  相似文献   
16.
Soil pore size distribution(SPSD) is one of the most important soil physical properties. This research investigated the relationships of location and shape parameters of the SPSD curves with plant-available water(PAW) and least limiting water range(LLWR) of the light-textured soils at the Torogh Agricultural Research Station in north-eastern Iran. Soil moisture release curve(SMRC), PAW and LLWR in matric heads of 100 and 330 h Pa for the field capacity and location and shape parameters of the SPSD curves of 30 soils with different texture and organic carbon contents were determined, and the variable relationships were statistically analyzed. The results showed that the median equivalent pore diameter(de), mean de, standard deviation(SD*), and skewness of the SPSD curves were significantly correlated with PAW(PAW330) and LLWR(LLWR330) measured in a matric head of 330 h Pa. Decrease in deand increase in the diversity of soil pore size(SD*) increased PAW330 and LLWR330. The SD* values of all the soil samples were lower than the optimal ranges suggested in literature. Neither PAW nor LLWR values were significantly different in the soils with the optimal modal deand those with non-optimal modal de. Optimal values of median and mean equivalent pore diameters and kurtosis of SPSD curves led to a significant improvement of PAW330 and LLWR330 as soil physical quality indicators. It was recommended to revise the optimal ranges for SD* and modal defor future studies.  相似文献   
17.
Abstract

To investigate the effect of foliar application of nano-chelates of iron, zinc, and manganese subjected to different irrigation conditions on physiological traits, and yield of soybean (cultivar M9), a split plot experiment was conducted in a completely randomized block design with three replications in two crop years (2016–2017). The main plot included four levels of irrigation (I): full irrigation (I 1), irrigation withhold at flowering stage (I 2), irrigation withhold at podding stage (I 3), and irrigation withhold during the grain filling period (I 4). Also, the subplot included eight levels of foliar application with Fe, Zn, Mn, Fe?+?Zn, Fe?+?Mn, Zn?+?Mn, Fe?+?Zn?+?Mn nano-chelates, and distilled water (control). The results of combined analysis of variance suggested that the effect of irrigation and foliar application of nano-chelate was significant on all traits. Water deficit stress significantly reduced the grain yield. The minimum numbers of pods per plant, number of grains per plant, 100-seed weight per plant, leaf area index, leaf chlorophyll concentration, total dry weight of plant, and the grain yield were obtained by irrigation withhold at podding stage. Foliar application of combined nano-chelates increased the soybean resistance against water shortage more considerably than the separate consumption of these elements. Under drought stress in podding stage, the application of Fe?+?Zn led to the highest yield with a mean of 2613.84?kg ha?1 where this increase was 61.1% higher than control.  相似文献   
18.
In this approach, a derivatization method is described for monitoring of organic acids in fermentation media without any separation step. The aqueous phase of fermentation media was evaporated and heated in a silylation reagent to form trimethylsilyl (TMS) derivatives. The silylated compounds are analyzed by 29Si nuclear magnetic resonance (29Si NMR) and gas chromatography-mass spectrometry (GC-MS). 29Si NMR can qualitatively monitor the components produced in the Krebs cycle. Quantification of these compounds is investigated by using selected ion monitoring mode of mass spectrometry. In this mode, mass to charge (m/z) values of their [M - 15]+ ions, which are 465, 275, 247, 221, 335, 251, and 313 of TMS derivatives of citric, alpha-ketoglutaric, succinic, fumaric, l-malic, oxaloacetic, and palmitic (as an internal standard), acids, respectively, are used. The limit of detection and the linear working range for derivatized citric acid were found to be 0.1 mg L(-1) and 10-3 x 10(4) mg L(-1). The relative standard deviation of the method for five replicates was 2.1%. The average recovery efficiency for citric acid added to culture media was approximately 97.2%. Quantitative results of GC-MS are compared with those obtained by an ultraviolet-visible method.  相似文献   
19.
In order to assess the effectiveness of foliar‐applied potassium (K+, 1.25%) using different salts (KCl, KOH, K2CO3, KNO3, KH2PO4, and K2SO4) in ameliorating the inhibitory effect of salt stress on sunflower plants, a greenhouse experiment was conducted. Sodium chloride (150 mM) was applied through the rooting medium to 18 d–old plants and after 1 week of salt treatment; different K+‐containing salts were applied twice in 1‐week interval as a foliar spray. Salt stress adversely affected the growth, yield components, gas exchange, and water relations, and also caused nutrient imbalance in sunflower plants. However, foliar‐applied different sources of potassium improved shoot and root fresh and shoot dry weights, achene yield, 100‐achene weight, photosynthetic rate, transpiration rate, stomatal conductance, water‐use efficiency, relative water content, and leaf and root K+ concentrations of sunflower plants grown under saline conditions. Under nonsaline conditions, improvement in shoot fresh weight, achene yield, 100‐achene weight, photosynthetic and transpiration rates, and root Na+ concentration was observed due to foliar‐applied different K sources. Of the different salts, K2SO4, KH2PO4, KNO3, and K2CO3 were more effective than KCl and KOH in improving growth and some key physiological processes of sunflower plants.  相似文献   
20.
Salinity is a major abiotic stress that affects crop production throughout the world. Biochar is an activated carbon soil conditioner that can alleviate the negative impacts of salinity. The research was conducted to evaluate the ameliorative effect of 1% and 2% of biochar application on wheat seed germination and growth attributes under salinity. Both levels of biochar improved the germination and growth conditions under salinity; however, 2% biochar level was more effective compared to 1% level. Root and shoot length increased up to 23% and11% with 2% biochar, respectively. The maximum increase of 16% and 10% in leaf water potential and osmotic potential was noted with 2% biochar at 150 mM salt. The decrease in proline content and soluble sugar at 2% biochar was 51% and 27%, respectively. Decrease in superoxide dismutase activity was 15.3% at 2% level of biochar under stress biochar mitigates the negative effects of salinity and improved wheat productivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号