首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75篇
  免费   6篇
  1篇
综合类   5篇
畜牧兽医   74篇
植物保护   1篇
  2021年   1篇
  2018年   1篇
  2016年   4篇
  2015年   2篇
  2014年   5篇
  2013年   6篇
  2010年   2篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2001年   2篇
  2000年   2篇
  1999年   4篇
  1998年   4篇
  1997年   2篇
  1994年   1篇
  1993年   3篇
  1992年   7篇
  1991年   4篇
  1990年   1篇
  1988年   4篇
  1987年   3篇
  1986年   3篇
  1985年   4篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1973年   2篇
  1971年   1篇
排序方式: 共有81条查询结果,搜索用时 15 毫秒
51.
Disease in animals is a well-known inhibitor of growth and reproduction. Earlier studies were initiated to determine the effects of endotoxin on pituitary hormone secretion. These studies found that in sheep, growth hormone (GH) concentration was elevated, whereas insulin-like growth factor-I (IGF-I) was inhibited, as was luteinizing hormone (LH). Examination of the site of action of endotoxin in sheep determined that somatotropes expressed the endotoxin receptor (CD14) and that both endotoxin and interleukin-Iβ activated GH secretion directly from the pituitary. In the face of elevated GH, there is a reduction of IGF-I in all species examined. As GH cannot activate IGF-I release during disease, there appears to be a downregulation of GH signalling at the liver, perhaps related to altered nitration of Janus kinase (JAK). In contrast to GH downregulation, LH release is inhibited at the level of the hypothalamus. New insights have been gained in determining the mechanisms by which disease perturbs growth and reproduction, particularly with regard to nitration of critical control pathways, with this perhaps serving as a novel mechanism central to lipopolysaccharide suppression of all signalling pathways. This pathway-based analysis is critical to the developing novel strategies to reverse the detrimental effect of disease on animal production.  相似文献   
52.
The occurrence of the pyometra is most common in the first half of the dioestrus when there is decreased cellular immunity associated with increased serum concentration of progesterone in females. The aim of this study was to determine the immunological profile of bitches with pyometra, studying serum levels of IL‐2, IL‐4, IL‐10, IFN‐γ, KC‐like and TNF‐α and comparing them with those of healthy bitches in anoestrus, dioestrus and pregnant. Forty females were divided into four experimental groups: group 1 (G1): with pyometra (n = 10); group 2 (G2): bitches in the second week of gestation (n = 10); group 3 (G3): in anoestrus (n = 10); and group 4 (G4): in dioestrus (n = 10). The serum levels for IL‐2, KC‐like, INF‐γ and TNF‐α were similar for all experimental groups. The values obtained for IL‐10 were found increased (p < 0.001) in animals in dioestrus and pyometra compared with females in anoestrus and pregnant, and the levels of IL‐4 observed were significantly greater (p < 0.001) in bitches with pyometra when compared with others. The cytokine profile in animals with pyometra is similar to bitches in dioestrus for IL‐10 and had increase in IL‐4 for bitches with pyometra, which represents an anti‐inflammatory these cases. This suggests the presence of an immunosuppressive state in both cases, which may explain the propensity of bitches in dioestrus to be affected by pyometra and the severity of the disease on these animals.  相似文献   
53.
54.
Autoradiography was used to quantify opioid receptors in the median eminence (ME) and preoptic area (POA) of the brain of eight heifers, and in vitro perifusion of ME and POA tissue from seven cows and heifers was used to examine the release of LHRH after administration of naloxone (NAL). For quantitative receptor autoradiography, [3H]NAL was used as the radioligand and NAL or morphine as competitors. Specific binding of [3H]NAL in POA and ME resulted in linear Scatchard plots with similar equilibrium dissociation constants (Kd = 4.2 +/- 1.1 nM) and mean binding site densities in the POA and ME (POA: 80.3 +/- 5.8; ME 67.5 +/- 8.0 fmol/mm2). There were no differences between mean binding site densities of zonas externa and interna of the ME; however, between various regions of the POA within individual animals, binding site densities varied threefold (47.6 to 165.1 fmol/mm2). During in vitro perifusions of isolated POA and ME, basal LHRH secretion from ME decreased (P less than .001) from 15.9 +/- 1.8 to 7.3 +/- .8 pg/10 min fraction (500 microliters) but remained constant for POA (3.1 +/- .4 pg/fraction). Injections of medium alone did not affect LHRH secretion. Although there was no significant dose (10(-9) to 10(-7) M) effect, NAL increased (P less than .05) LHRH efflux from the ME and POA when administered at 110 min from the initiation of perfusion and again at 200 min for ME but not for POA. All tissues responded to KCl (30 mM) administered at 290 min of perifusion with increased (P less than .001) LHRH efflux. Both immunoreactive-LHRH and immunoreactive-beta-endorphin were immunocytochemically localized in neurons from some of these perifused tissues. We suggest that endogenous opioids suppress LHRH secretion by actions on specific opioid receptors located within the POA and ME of the brain.  相似文献   
55.
The site within the hypothalamic-pituitary axis at which cortisol acts to inhibit luteinizing hormone (LH) secretion was investigated in female pigs. Six ovariectomized, hypophysial stalk-transected (HST) gilts were given 1 microgram pulses of gonadotropin releasing-hormone (GnRH) iv every 45 min from day 0 to 12. On days 6-12, each of 3 gilts received either hydrocortisone acetate (HCA; 3.2 mg/kg body weight) or oil vehicle im at 12-hr intervals. Four ovariectomized, pituitary stalk-intact gilts served as controls and received HCA and pulses of 3.5% sodium citrate. Jugular blood was sampled daily and every 15 min for 5 hr on days 5 and 12. Treatment with HCA decreased serum LH concentrations and LH pulse frequency in stalk-intact animals. In contrast, serum LH concentrations, as well as the frequency and amplitude of LH pulses, were unaffected by HCA in HST gilts and were similar to those observed in oil-treated HST gilts. We suggest that chronically elevated concentrations of circulating cortisol inhibit LH secretion in pigs by acting at the level of the hypothalamus.  相似文献   
56.
Three experiments (EXP) were conducted to test the hypothesis that leptin modulates LH, GnRH, and neuropeptide Y (NPY) secretion. In EXP I, prepuberal gilts received intracerebroventricular (i.c.v.) leptin injections and blood samples were collected. In EXP II, anterior pituitary cells from prepuberal gilts in primary culture were challenged with 10(-14), 10(-13), 10(-12), 10(-11), 10(-10), 10(-9), 10(-8), 10(-7), or 10(-6) M leptin individually or in combinations with 10(-10), 10(-9), and 10(-8) M GnRH. In EXP III, hypothalamic-preoptic area (HYP-POA) explants were placed in perfusion system and exposed to 0 (n=5), 10(-12) M (n=4), 10(-10) M (n=4), 10(-8) M (n=4), or 10(-6) M (n=5) human recombinant leptin (LEP) for 30 min. In EXP I, serum LH concentrations were unaffected by leptin treatment. In EXP II, all doses of leptin increased LH secretion except for 10(-12) and 10(-7) M. Only 10(-7), or 10(-13) M leptin in combination with 10(-8) or 10(-9) M GnRH, respectively, suppressed LH secretion. In EXP III, prior to leptin, media GnRH concentrations were similar across treatments. Media GnRH concentrations increased after 10(-12), 10(-10), and 10(-8) M leptin compared to control. Leptin treatment failed to influence NPY secretion across treatments. These results indicate that components of the neuroendocrine axis that regulate GnRH and LH secretion are functional and leptin sensitive before the onset of puberty. Other neural peptides in addition to NPY may mediate the acute effects of leptin on the GnRH-LH system and lastly, the inability of i.c.v. leptin treatment to increase LH secretion may in part be related to stage of sexual maturation and associated change in negative feedback action of estradiol on LH secretion.  相似文献   
57.
Prepuberal (P) gilts were induced to ovulate with pregnant mare serum gonadotropin followed 72 h later by human chorionic gonadotropin (hCG). Three P gilts and three mature (M) gilts each were ovariectomized on d 10, 14, 18, 22 and 26 (d 0 = day of hCG for P gilts and onset of estrus for M gilts). Gilts ovariectomized on d 14, 18, 22 and 26 were hysterectomized on d 6 to ensure maintenance of the corpora lutea (CL). Two to five grams of minced luteal tissue were dispersed using collagenase and hyaluronidase in HEPES buffered salt solution supplemented with glucose and bovine serum albumin. Dispersed cells were rinsed in Dulbecco's Modified Eagle Medium (DMEM), counted (ratio of large to total number of luteal cells determined) and then incubated for 1 h in DMEM. With aliquots standardized to 2.5 X 10(4) viable, large cells (greater than 25 micron diameter) were incubated in 1 ml DMEM for 2 h in the presence of either 10, 50, 100 or 1,000 ng luteinizing hormone (LH); .1, 1, 10 or 100 ng hCG; 10, 100 or 1,000 ng norepinephrine (NE) or either .75, or 1.5 mM dibutyrl cyclic adenosine monophosphate (dbcAMP). Progesterone (P4) in the medium was quantified by radioimmunoassay. Basal P4 production (no P4 stimulator added to the medium) on d 10, 14, 18, 22 and 26 for P gilts was 246 +/- 9, 66 +/- 4, 64 +/- 6, 41 +/- 3 and 69 +/- 6 ng/ml medium, respectively, and for M gilts was 281 +/- 12, 128 +/- 8, 53 +/- 4, 82 +/- 6, 101 +/- 5 ng/ml medium, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
58.
Serum concentrations of pituitary and adrenal hormones were determined in lactating sows and ovariectomized (OVX) gilts exposed to 8 h (8L:16D) or 16 h of light (16L:8D). In addition serum prolactin (PRL) concentrations were determined after a thyrotropin releasing hormone (TRH) challenge. At 103 +/- 2 d of gestation or 3 wk after ovariectomy of nulliparous gilts on d 7 to 9 of the estrous cycle (d - 10), blood samples were collected from jugular vein cannulae at 30-min intervals for 8 h beginning at 0800 h. Immediately after the last sample, 13 sows and five OVX gilts were assigned to 8L:16D and 14 sows and five OVX gilts were assigned to 16L:8D/d and placed in two identical chambers in the farrowing house. Blood sampling was repeated on d 7, 14 and 21 of lactation in the sows and on d 7, 14, 21 and 28 in the OVX gilts. In Exp. 1, serum cortisol (C) concentrations were similar for sows exposed to 8L:16D (n = 7) and 16L:8D (n = 6) treatments, whereas in Exp. 2, serum C concentrations for sows exposed to 8L:16D (n = 6) were lower than those exposed to 16L:8D (n = 6) on d 7, 14 and 21. Photoperiod failed to influence serum concentrations of PRL, luteinizing hormone (LH) and growth hormone in the lactating sows or PRL in the OVX gilts. Photoperiod also failed to affect mean basal serum concentrations, peak height and peak frequency for PRL and LH in the lactating sows or for PRL in the OVX gilts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
59.
Seven sows were placed into one of two environmental chambers at 22 C, 5 d prior to farrowing. On day 9 of lactation, one chamber was changed to 30 C (n = 4) and the other remained at 22 C (n = 3). On days 24 and 25, blood samples were collected every 15 min for 9 hr and 7 hr, respectively. On day 24, thyrotropin releasing hormone (TRH) and gonadotropin releasing hormone (GnRH) were injected iv at hour 8. On day 25 naloxone (NAL) was administered iv at hour 4 followed 2 hr later by iv injection of TRH and GnRH. Milk yield and litter weights were similar but backfat thickness (BF) was greater in 22 C sows (P less than .05) compared to 30 C sows. Luteinizing hormone (LH) pulse frequency was greater (P less than .003) and LH pulse amplitude was less (P less than .03) in 22 C sows. LH concentrations after GnRH were similar on day 24 but on day 25, LH concentrations after GnRH were greater (P less than .05) for 30 C sows. Prolactin (PRL) concentrations were similar on days 24 and 25 for both groups. However, PRL response to TRH was greater (P less than .05) on both days 24 and 25 in 30 C sows. Growth hormone (GH) concentrations, and the GH response to TRH, were greater (P less than .0001) in 30 C sows. Cortisol concentrations, and the response to NAL, were less (P less than .03) in 30 C sows. NAL failed to alter LH secretion but decreased (P less than .05) PRL secretion in both groups of sows. However, GH response to NAL was greater (P less than .05) in 30 C sows. Therefore, sows exposed to elevated ambient temperature during lactation exhibited altered endocrine function.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号