首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   9篇
林业   2篇
基础科学   1篇
  3篇
综合类   25篇
水产渔业   1篇
畜牧兽医   63篇
植物保护   1篇
  2020年   1篇
  2018年   3篇
  2017年   1篇
  2016年   3篇
  2015年   2篇
  2014年   3篇
  2013年   12篇
  2012年   3篇
  2010年   4篇
  2009年   2篇
  2008年   2篇
  2007年   2篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   11篇
  1997年   1篇
  1996年   3篇
  1994年   2篇
  1993年   3篇
  1992年   5篇
  1991年   4篇
  1990年   4篇
  1989年   3篇
  1988年   5篇
  1985年   1篇
  1984年   1篇
  1976年   1篇
  1971年   1篇
  1954年   1篇
  1943年   1篇
  1909年   1篇
  1908年   1篇
  1901年   1篇
  1899年   1篇
  1898年   2篇
  1895年   1篇
排序方式: 共有96条查询结果,搜索用时 15 毫秒
11.
12.
The dynamics of two-dimensional small-polaron formation at ultrathin alkane layers on a silver(111) surface have been studied with femtosecond time- and angle-resolved two-photon photoemission spectroscopy. Optical excitation creates interfacial electrons in quasi-free states for motion parallel to the interface. These initially delocalized electrons self-trap as small polarons in a localized state within a few hundred femtoseconds. The localized electrons then decay back to the metal within picoseconds by tunneling through the adlayer potential barrier. The energy dependence of the self-trapping rate has been measured and modeled with a theory analogous to electron transfer theory. This analysis determines the inter- and intramolecular vibrational modes of the overlayer responsible for self-trapping as well as the relaxation energy of the overlayer molecular lattice. These results for a model interface contribute to the fundamental picture of electron behavior in weakly bonded solids and can lead to better understanding of carrier dynamics in many different systems, including organic light-emitting diodes.  相似文献   
13.
Four Missouri stalagmites yield consistent overlapping records of oxygen and carbon isotopic changes and provide a climate and vegetation history with submillennial resolution from 75 to 25 thousand years ago (ka). The thorium-230-dated records reveal that between 75 and 55 ka, the midcontinental climate oscillated on millennial time scales between cold and warm, and vegetation alternated among forest, savanna, and prairie. Temperatures were highest and prairie vegetation peaked between 59 and 55 ka. Climate cooled and forest replaced grassland at 55 ka, when global ice sheets began to build during the early part of Marine Oxygen Isotope Stage 3.  相似文献   
14.
Lynts GW  Judd JB 《Science (New York, N.Y.)》1971,171(3976):1143-1144
Estimates of paleotemperatures, based upon paleoecological analysis of planktonic foraminiferal thanatocoenoses of three piston cores from Tongue of the Ocean, Bahamas, indicate a maximum mean variation between Late Pleistocene glacial and nonglacial stages of 3.6 degrees C. The data also indicate that the Early Wisconsin glacial stage was 0.7 degrees C warmer than the Late Wisconsin glacial stage.  相似文献   
15.
Effects of small population size and reduced genetic variation on the viability of wild animal populations remain controversial. During a 35-year study of a remnant population of greater prairie chickens, population size decreased from 2000 individuals in 1962 to fewer than 50 by 1994. Concurrently, both fitness, as measured by fertility and hatching rates of eggs, and genetic diversity declined significantly. Conservation measures initiated in 1992 with translocations of birds from large, genetically diverse populations restored egg viability. Thus, sufficient genetic resources appear to be critical for maintaining populations of greater prairie chickens.  相似文献   
16.
17.
18.
The effect of a spray-tank adjuvant on the persistence, distribution, and degradation of two pesticides, chlorothalonil and chlorpyrifos, was studied in a commercial cranberry bog. Pesticides were applied according to label instructions to cranberry plants in paired plot studies. Dislodgeable foliar and whole fruit residues of both pesticides and several degradation products were assessed over a growing season. Residues were also assessed in soil samples collected at fruit harvest. Adjuvant increased both fruit and foliar residues but did not significantly alter the dissipation rate or metabolism of either pesticide. The dissipation of dislodgeable foliar chlorothalonil and chlorpyrifos residues followed first-order kinetics, with estimated half-lives of 12.7 and 3.5 d, respectively. All residue levels on harvested fruit were well below the current U.S. EPA tolerances for fresh cranberries. Chlorothalonil (58%) was the major residue in fruit at harvest (76 d post-chlorothalonil application), with 4-hydroxy-2,5,6-trichloroisophthalonitrile and 1,3-dicarbamoyl-2,4,5,6-tetrachlorobenzene accounting for 26% and 6% of the total residues, respectively. Degradation products accounted for 88% of the total chlorothalonil residues in soil at fruit harvest. The products 1,3-dicarbamoyl-2,4,5,6-tetrachlorobenzene, 1-carbamoyl-3-cyano-4-hydroxy-2,5,6-trichlorobenzene, 2,5,6-trichloro-4-methylthioisophthalonitrile, and 2,4,5-trichloroisophthalonitrile have not been previously identified in cranberry bog environments. Chlorpyrifos was detected in fruit at harvest (62 d post-chlorpyrifos application), but no metabolites were found. Chlorpyrifos-oxon and 3,5,6-trichloro-2-pyridinol, however, were detected in earlier fruit samples and in foliage and soil samples.  相似文献   
19.
Summary An irrigation experiment was conducted on young kiwifruit vines over two seasons to examine effects of water stress on fruit development. Vines were grown outdoors in a sandy, rooting medium enclosed within a polythene-lined trench with removable surface covers to enable strict control of the water supply. Measurements of fruit growth, leaf water potential, and stomatal conductance were made throughout the season in conjunction with periods of water stress imposed at different times, and for varying durations. Fruit development was very responsive to water stress with mean fruit size per vine at harvest varying from 60 to 130 cm3 as a result of various stress treatments. Fruit expansion ceased when predawn leaf water potentials fell below –0.1 MPa. Upon rewatering, leaf turgor was regained within 24 h even after severe, prolonged stress. Any turgor loss associated with fruit softening was quickly made up, and thereafter fruit growth continued at the same rate concurrently exhibited on continuously well-watered vines. Suggesting that stomatal conductance did not follow the rapid recovery of leaf water potentials and fruit expansion may be more closely linked to water supply than to the concurrent rate of photosynthesis. Despite the large range in mean fruit size, the shape of the fruit size distribution at harvest was not affected by water stress and it is concluded that harvest yields can be adequately modelled by assuming a normal distribution with a fixed standard deviation.  相似文献   
20.
The concentrations of the hydrogen radicals OH and HO2 in the middle and upper troposphere were measured simultaneously with those of NO, O3, CO, H2O, CH4, non-methane hydrocarbons, and with the ultraviolet and visible radiation field. The data allow a direct examination of the processes that produce O3 in this region of the atmosphere. Comparison of the measured concentrations of OH and HO2 with calculations based on their production from water vapor, ozone, and methane demonstrate that these sources are insufficient to explain the observed radical concentrations in the upper troposphere. The photolysis of carbonyl and peroxide compounds transported to this region from the lower troposphere may provide the source of HOx required to sustain the measured abundances of these radical species. The mechanism by which NO affects the production of O3 is also illustrated by the measurements. In the upper tropospheric air masses sampled, the production rate for ozone (determined from the measured concentrations of HO2 and NO) is calculated to be about 1 part per billion by volume each day. This production rate is faster than previously thought and implies that anthropogenic activities that add NO to the upper troposphere, such as biomass burning and aviation, will lead to production of more O3 than expected.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号