首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   472篇
  免费   26篇
  国内免费   2篇
林业   20篇
农学   21篇
基础科学   1篇
  53篇
综合类   56篇
农作物   15篇
水产渔业   66篇
畜牧兽医   212篇
园艺   6篇
植物保护   50篇
  2023年   3篇
  2022年   3篇
  2021年   9篇
  2020年   10篇
  2019年   12篇
  2018年   5篇
  2017年   11篇
  2016年   12篇
  2015年   6篇
  2014年   13篇
  2013年   13篇
  2012年   36篇
  2011年   40篇
  2010年   24篇
  2009年   17篇
  2008年   29篇
  2007年   43篇
  2006年   26篇
  2005年   23篇
  2004年   25篇
  2003年   28篇
  2002年   27篇
  2001年   7篇
  2000年   6篇
  1999年   7篇
  1998年   5篇
  1997年   3篇
  1996年   2篇
  1995年   6篇
  1994年   3篇
  1992年   3篇
  1989年   2篇
  1987年   2篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1979年   2篇
  1976年   2篇
  1973年   1篇
  1972年   4篇
  1971年   1篇
  1970年   1篇
  1967年   3篇
  1966年   1篇
  1965年   3篇
  1964年   1篇
  1961年   1篇
  1960年   2篇
  1936年   1篇
排序方式: 共有500条查询结果,搜索用时 15 毫秒
141.
The photodegradation of [(14)C]niclosamide was studied in sterile, pH 5, 7, and 9 buffered aqueous solutions under artificial sunlight at 25.0 +/- 1.0 degrees C. Photolysis in pH 5 buffer is 4.3 times faster than in pH 9 buffer and 1.5 times faster than in pH 7 buffer. In the dark controls, niclosamide degraded only in the pH 5 buffer. After 360 h of continuous irradiation in pH 9 buffer, the chromatographic pattern of the degradates was the same regardless of which ring contained the radiolabel. An HPLC method was developed that confirmed these degradates to be carbon dioxide and two- and four-carbon aliphatic acids formed by cleavage of both aromatic rings. Carbon dioxide was the major degradate, comprising approximately 40% of the initial radioactivity in the 360 h samples from both labels. The other degradates formed were oxalic acid, maleic acid, glyoxylic acid, and glyoxal. In addition, in the chloronitroaniline-labeled irradiated test solution, 2-chloro-4-nitroaniline was observed and identified after 48 h of irradiation but was not detected thereafter. No other aromatic compounds were isolated or observed in either labeled test system.  相似文献   
142.
Z1, Z2, Z3, Z4, Z5 and Z6 are alien addition lines to wheat involving Thinopyrum intermedium chromosomes. We have characterized the Thinopyrum intermedium chromosomes or segments in these lines using multi-color florescence in situ hybridization. The probes used included total genomic DNA of Pseudoroegneria stipfolia (St) and cloned probes of highly tandem repetitive DNA pSc119. 2 and pAs1. Disomic addition lines Z1, Z2 and Z6 have the same single pair of alien chromo-somes carrying the resistant gene(s) to barley yellow dwarf virus (BYDV). This alien chromosome is a St/E translocation; within the long arm, there is a big insertion of an E-genome chromosomalsegment (30%). Disomic addition line Z3 carries one pair of St/E Robertsonian translocation chromosomes ; on the short arm (E) there is a nuclear organizer region, which expresses in some cells. In Z5, the added chromosome is one pair of translocated chromosomes. Chromosomes 2D, 3D and 3Stwere involved in the translocation with great possibility〔2IS · 3DL (0. 47) - 3StL (0. 53)〕. The St segment is responsible for resistance to leaf and stem rusts. Addition line Z4 also carries the translo cated chromosome found in Z5, but in addition carries one pair of 7AS (0. 64) - 7StS (0. 36) · 7StL translocation chromosomes. The 7St fragment bears the stripe rust resistance, and replaces the normal 7A. All of the translocations in Z1, Z2, Z6 and Z3 existed in one of their parents, the wheat Th. intermedium partial amphiploid, Zhong 5. The two wheat-Th. intermedium translocations in Z4 and Z5 occurred during the backcrossing of Zhong 5 to the other wheat varieties in the development of the addition lines. Spontaneous homoeologous translocations showed a close genome relationship between wheat and Th. intermedium. This paper also demonstrated the potential of highly repetitive sequences DNA in verification and characterization of translocation chromosomes.  相似文献   
143.
Objective Determine the effects of matrix metalloproteinases (MMPs)‐2, ‐9, macrophage inflammatory protein‐2 (MIP‐2), tissue inhibitors of matrix metalloproteinase (TIMP)‐1 and ‐2 by immunohistochemical expression in fungal affected and purulonecrotic corneas. Procedure Paraffin‐embedded equine corneal samples; normal (n = 9), fungal affected (FA; n = 26), and purulonecrotic without fungi (PN; n = 41) were evaluated immunohistochemically for MMP‐2, ‐9, MIP‐2, TIMP‐1 and ‐2. The number of immunoreactive inflammatory cells was counted and statistics analyzed. Western blot was performed to detect MMP‐2, MMP‐9, TIMP‐1 and TIMP‐2 proteins. Results Matrix metalloproteinases‐2, ‐9, MIP‐2, TIMP‐1 and ‐2 immunoreactivity was identified in corneal epithelium of normal corneas, and in corneal epithelium, inflammatory cells, keratocytes, and vascular endothelial cells of both FA and PN samples. Inflammatory cell immunoreactivity was significantly higher in FA and PN samples than in the normal corneas. There was positive correlation between MMP‐2 and MIP‐2, MMP‐9 and MIP‐2, and MMP‐9 and TIMP‐1 in inflammatory cell immunoreactivity in FA samples. There was positive correlation between MMP‐9 and MIP‐2, MMP‐9 and TIMP‐2, MIP‐2 and TIMP‐1, and MIP‐2 and TIMP‐2 in inflammatory cell immunoreactivity in PN samples. Western blot confirmed the presence of all four proteins in equine corneal samples. Conclusion Increased immunoreactivity of MMP‐2 and ‐9 in FA and PN samples is indirectly related to MIP‐2 through its role in neutrophil chemo‐attraction. Tissue inhibitors of matrix metalloproteinase‐1 and TIMP‐2 are up‐regulated in equine purulonecrotic and fungal keratitis secondary to MMP‐2 and MMP‐9 expression. The correlation between MMPs ‐2 and ‐9, MIP‐2, TIMPs ‐1 and ‐2 suggests that these proteins play a specific role in the pathogenesis of equine fungal keratitis.  相似文献   
144.
145.
Proteins containing membrane attack complex/perforin (MACPF) domains play important roles in vertebrate immunity, embryonic development, and neural-cell migration. In vertebrates, the ninth component of complement and perforin form oligomeric pores that lyse bacteria and kill virus-infected cells, respectively. However, the mechanism of MACPF function is unknown. We determined the crystal structure of a bacterial MACPF protein, Plu-MACPF from Photorhabdus luminescens, to 2.0 angstrom resolution. The MACPF domain reveals structural similarity with poreforming cholesterol-dependent cytolysins (CDCs) from Gram-positive bacteria. This suggests that lytic MACPF proteins may use a CDC-like mechanism to form pores and disrupt cell membranes. Sequence similarity between bacterial and vertebrate MACPF domains suggests that the fold of the CDCs, a family of proteins important for bacterial pathogenesis, is probably used by vertebrates for defense against infection.  相似文献   
146.
Theoretical and laboratory research suggests that phenotypic plasticity can evolve under selection. However, evidence for its evolutionary potential from the wild is lacking. We present evidence from a Dutch population of great tits (Parus major) for variation in individual plasticity in the timing of reproduction, and we show that this variation is heritable. Selection favoring highly plastic individuals has intensified over a 32-year period. This temporal trend is concurrent with climate change causing a mismatch between the breeding times of the birds and their caterpillar prey. Continued selection on plasticity can act to alleviate this mismatch.  相似文献   
147.
Crops can be devastated by pathogenic strains of Agrobacterium tumefaciens that cause crown gall tumors. This devastation can be prevented by the nonpathogenic biocontrol agent A. radiobacter K84, which prevents disease by production of the "Trojan horse" toxin agrocin 84, which is specifically imported into tumorgenic A. tumefaciens strains to cause cell death. We demonstrate that this biocontrol agent targets A. tumefaciens leucyl-tRNA synthetase (LeuRS), an essential enzyme for cell viability, while the agent itself survives by having a second, self-protective copy of the synthetase. In principle, this strategy from nature could be applied to other crop diseases by direct intervention.  相似文献   
148.
149.
Class I phosphoinositide 3-kinase (PI3K) signaling pathways regulate several important cellular functions, including cellular growth, division, survival, and movement. Class IB PI3K (also known as PI3Kgamma) links heterotrimeric GTP-binding protein-coupled receptors to these pathways. Activation of class IB PI3K results in the rapid synthesis of phosphatidylinositol-3,4,5-trisphosphate [PtdIns(3,4,5)P3] and its dephosphorylation product PtdIns(3,4)P2 in the plasma membrane. These two lipid messengers bind to pleckstrin homology domain-containing effectors that regulate a complex signaling web downstream of receptor activation. Characteristic features of this pathway are the regulation of protein kinases and the regulation of small guanosine triphosphatases that control cellular movement, adhesion, contraction, and secretion. Most of the ligands that activate class IB PI3K are involved in coordinating the body's response to injury and infection, and recent studies suggest that small molecule inhibitors of this enzyme may represent a novel class of anti-inflammatory therapeutic agents.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号