首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7140篇
  免费   330篇
  国内免费   9篇
林业   568篇
农学   246篇
基础科学   56篇
  1484篇
综合类   1024篇
农作物   319篇
水产渔业   436篇
畜牧兽医   2671篇
园艺   194篇
植物保护   481篇
  2023年   35篇
  2022年   65篇
  2021年   120篇
  2020年   134篇
  2019年   159篇
  2018年   126篇
  2017年   139篇
  2016年   155篇
  2015年   115篇
  2014年   172篇
  2013年   342篇
  2012年   370篇
  2011年   464篇
  2010年   284篇
  2009年   235篇
  2008年   403篇
  2007年   395篇
  2006年   409篇
  2005年   394篇
  2004年   366篇
  2003年   332篇
  2002年   354篇
  2001年   106篇
  2000年   105篇
  1999年   119篇
  1998年   76篇
  1997年   71篇
  1996年   63篇
  1995年   50篇
  1994年   40篇
  1993年   58篇
  1992年   66篇
  1991年   67篇
  1990年   68篇
  1989年   81篇
  1988年   61篇
  1987年   48篇
  1986年   48篇
  1985年   53篇
  1984年   37篇
  1983年   60篇
  1982年   31篇
  1980年   33篇
  1979年   36篇
  1978年   32篇
  1977年   31篇
  1976年   27篇
  1974年   28篇
  1973年   35篇
  1972年   37篇
排序方式: 共有7479条查询结果,搜索用时 15 毫秒
61.
Processed aconite drugs are widely used in Eastern medicine as painkillers and antirheumatic agents. It is known that the traditional processing of aconite drugs increases the amount of lipo-alkaloids. In order to obtain information about the pharmacological potential of these compounds, semisynthesis of 9 aconitine-derived lipo-alkaloids was carried out and their COX-1, COX-2 and LTB4 formation inhibitory activities were investigated. It was found that compounds esterified with unsaturated fatty acids demonstrated significant COX-2 inhibitory effects, while in the COX-1 assay only 14-benzoylaconine-8-O-eicosapentaenoate exerted remarkable activity. The inhibition of LTB4 formation was pronounced in cases of long chain fatty acid derivatives.  相似文献   
62.
Developing sustainable extractive industries in otherwise intact tropical forest regions requires a sound understanding of the production potential of key resource populations. The oleoresin extracted from Copaifera trees is an economically important non-timber forest product harvested throughout the lowland Amazon basin. We studied oleoresin extraction from four species of Copaifera trees with known harvest histories within two contiguous extractive reserves in western Brazilian Amazonia. We conducted a large-scale experimental harvest of 179 previously unharvested Copaifera trees, in both seasonally flooded (várzea) and adjacent unflooded (terra firme) forests. The likelihood of trees yielding any oleoresin was principally determined by their species identity: C. multijuga was the only species to regularly yield oleoresin (70% of trees). Yield volumes varied both amongst species and forest types: C. multijuga (restricted to terra firme forest) had the highest mean yield of 505 ml, whilst C. guyanensis produced higher volumes of oleoresin in várzea (139 ml) than terra firme (15 ml) forest. Intraspecific differences were driven mainly by tree size. To assess extraction sustainability, we reharvested a sample of C. multijuga trees and compared the oleoresin production of 24 conspecific trees that had been initially harvested one year previously with that of 17 trees initially harvested three years previously. Reharvested trees produced just 35% of the oleoresin volume compared to that when originally drilled, but this response was not affected by the time interval between consecutive harvests. We demonstrate that, within a population of Copaifera, both morphological and environmental factors restrict total productivity; consideration of these factors should inform sustainable management practises. We additionally raise methodological considerations that may improve the comparability of studies.  相似文献   
63.
It is predicted that dryland salinity will affect up to 17 Mha of the Australian landscape by 2050, and therefore, monitoring the health of tree plantings and remnant native vegetation in saline areas is increasingly important. Casuarina glauca Sieber ex Spreng. has considerable salinity tolerance and is commonly planted in areas with a shallow, saline water table. To evaluate the potential of using the nitrogenous composition of xylem sap to assess salinity stress in C. glauca, the responses of trees grown with various soil salinities in a greenhouse were compared with those of trees growing in field plots with different water table depths and groundwater salinities. In the greenhouse, increasing soil salinity led to increased allocation of nitrogen (N) to proline and arginine in both stem and root xylem sap, with coincident decreases in citrulline and asparagine. Although the field plots were ranked as increasingly saline-based on ground water salinity and depth-only the allocation of N to citrulline differed significantly between the field plots. Within each plot, temporal variation in the composition of the xylem sap was related to rainfall, rainfall infiltration and soil salinity. Periods of low rainfall and infiltration and higher soil salinity corresponded with increased allocation of N to proline and arginine in the xylem sap. The allocation of N to citrulline and asparagine increased following rainfall events where rain was calculated to have infiltrated sufficiently to decrease soil salinity. The relationship between nitrogenous composition of the xylem sap of C. glauca and soil salinity indicates that the analysis of xylem sap is an effective method for assessing changes in salinity stress in trees at a particular site over time. However, the composition of the xylem sap proved less useful as a comparative index of salinity stress in trees growing at different sites.  相似文献   
64.
Ngugi  Michael R.  Hunt  Mark A.  Doley  David  Ryan  Paul  Dart  Peter 《New Forests》2003,26(2):187-200
Effects of soil water availability on seedling growth, dry matter production and allocation were determined for Gympie (humid coastal) and Hungry Hills (dry inland) provenances of Eucalyptus cloeziana F. Muell. and for E. argophloia Blakely (dry inland) species. Seven-month-old seedlings were subjected to well-watered (100% field capacity, FC), moderate (70% FC) and severe (50% FC) soil water regimes in a glasshouse environment for 14 wk. There were significant differences in seedling growth, biomass production and allocation patterns between species. E. argophloia produced twice as much biomass at 100% FC, and more than three times as much at 70% and 50% FC than did either E. cloeziana provenance. Although the humid provenance of E. cloeziana had a greater leaf area at 100% FC conditions than did the dry provenance, total biomass production did not differ significantly. Both E. cloeziana provenances were highly sensitive to water deficits. E. argophloia allocated 10% more biomass to roots than did E. cloeziana. Allometric analyses indicated that relative biomass allocation patterns were significantly affected by genotype but not by soil water availability. These results have implications for taxon selection for cultivation in humid and subhumid regions.  相似文献   
65.
Throughout eastern North America, stands of northern red oak (Quercus rubra L.) are undergoing successional replacement by shade-tolerant competitors. In the Great Lakes-St. Lawrence (GLSL) forest region, Q. rubra approaches the northern limit of its distribution, and ecosystem-specific silvicultural directives are needed to promote regeneration. We used an inductive, ordination-based approach to explore patterns in understorey plant community composition and microenvironment under different partial harvest treatments applied in a GLSL hardwood stand, and related these to characteristics of natural seedlings of Q. rubra and its competitors Acer rubrum and Acer saccharum.Two years after harvest, we established 2 m × 2 m plots in a stratified random design under 70% (n = 20) and 50% (n = 19) crown closure uniform shelterwood, group selection (n = 15), and uncut upper slope (n = 10) and lower slope (n = 10) areas. Percent cover of understorey vascular plant species, and a suite of microclimatic and edaphic variables were measured in each plot. Density, mean diameter and mean height of seedlings in the understorey (height <1 m) were determined in each plot for Q. rubra, A. rubrum and A. saccharum.Correspondence analysis (CA) ordination extracted two major axes explaining 21.6% of the total inertia in the species cover by plot matrix. Axis one separated uncut plots from the 50% shelterwood along a gradient of canopy cover associated with partial harvest treatments. Plot scores on axis one (13.2%) reflected a shift in dominance of the understorey from shade-tolerant Acer spp. to shade-intolerant colonizers, Rubus idaeus and Carex spp. Plot scores on axis one were directly (p < 0.05) associated with total understorey plant cover, litter depth, soil temperature and pH, but not with measures of plant diversity. Axis two (8.4%) separated plots from upper slope and lower slope areas, and plot scores were inversely associated (p < 0.05) with soil pH, phosphorus and nitrogen levels. Along axis two there was a shift in dominance from competitive (e.g. A. saccharum) to stress-tolerant (e.g. A. rubrum) species as soil fertility declined. Stepwise linear regression indicated seedling diameter in Q. rubra, A. rubrum and A. saccharum was inversely related to canopy cover. This suggests all three species benefited from partial harvest, although the relationship was strongest in Q. rubra. Patterns in understorey composition, microenvironment and seedling characteristics provide the basis to identify the main competitors of Q. rubra seedlings and adjust regeneration efforts along gradients of canopy closure and soil fertility under partial harvest systems within the GLSL forest region.  相似文献   
66.
Plant invasions of natural communities are commonly associated with reduced species diversity and altered ecosystem structure and function. This study investigated the effects of invasion and management of the woody shrub Lantana camara (lantana) in wet sclerophyll forest on the south-east coast of Australia. The effects of L. camara invasion and management on resident vegetation diversity and recruitment were determined as well as if invader management initiated community recovery. Vascular plant species richness, abundance and composition were surveyed and compared across L. camara invaded, non-invaded and managed sites following L. camara removal during a previous control event by land managers. Native tree juvenile and adult densities were compared between sites to investigate the potential effects of L. camara on species recruitment. Invasion of L. camara led to a reduction in species richness and compositions that diverged from non-invaded vegetation. Species richness was lower for fern, herb, tree and vine species, highlighting the pervasive threat of L. camara. For many common tree species, juvenile densities were lower within invaded sites than non-invaded sites, yet adult densities were similar across all invasion categories. This indicates that reduced species diversity is driven in part by recruitment limitation mechanisms, which may include allelopathy and resource competition, rather than displacement of adult vegetation. Management of L. camara initiated community recovery by increasing species richness, abundance and recruitment. While community composition following L. camara management diverged from non-invaded vegetation, vigorous tree and shrub recruitment signals that long-term community reinstatement will occur. However, secondary weed invasion occurred following L. camara control. Follow-up weed control may be necessary to prevent secondary plant invasion following invader management and facilitate long-term community recovery.  相似文献   
67.
Forests accumulate much less carbon than the amount fixed through photosynthesis because of an almost equally large opposing flux of CO2 from the ecosystem. Most of the return flux to the atmosphere is through soil respiration, which has two major sources, one heterotrophic (organisms decomposing organic matter) and one autotrophic (roots, mycorrhizal fungi and other root-associated microbes dependent on recent photosynthate). We used tree-girdling to stop the flow of photosynthate to the belowground system, hence, blocking autotrophic soil activity in a 120-yr-old boreal Picea abies forest. We found that at the end of the summer, two months after girdling, the treatment had reduced soil respiration by up to 53%. This figure adds to a growing body of evidence indicating (t-test, d.f. = 7, p < 0.05) that autotrophic respiration may contribute more to total soil respiration in boreal (mean 53 ± 2%) as compared to temperate forests (mean 44 ± 3%). Our data also suggests that there is a seasonal hysteresis in the response of total soil respiration to changes in temperature. We propose that this reflects seasonality in the tree below-ground carbon allocation.  相似文献   
68.

Timber use in central Europe is expected to increase in the future, in line with forest policy goals to strengthen local wood supply for CO2-neutral energy production, construction and other uses. Growing stocks in low-elevation forests in Switzerland are currently high as exemplified by the Swiss canton of Aargau, for which an average volume of 346 ± 16 m3 ha−1 was measured in the 3rd Swiss National forest inventory (NFI) in 2004–2006. While this may justify a reduction of growing stocks through increased timber harvesting, we asked whether such a strategy may conflict with the sustainability of timber production and conservation goals. We evaluated a range of operationally relevant forest management scenarios that varied with respect to rotation length, growing stock targets and the promotion of conifers in the regeneration. The scenarios aimed at increased production of softwood, energy wood, the retention of potential habitat trees (PHTs) and the conversion to a continuous cover management system. They were used to drive the inventory-based forest simulator MASSIMO for 100 years starting in 2007 using the NFI sampling plots in Aargau. We analyzed model outputs with respect to projected future growing stock, growth, timber and energy yield and harvesting costs. We found growing stock to drop to 192 m3 ha−1 in 2106 if business-as-usual (BAU as observed between the 2nd and 3rd NFI) timber volumes were set as harvesting targets for the whole simulation period. The promotion of conifers and a reduction of rotation lengths in a softwood scenario yielded 25% more timber over the whole simulation period than BAU. An energy wood scenario that reduced growing stock to 200 m3 ha−1 by 2056 and promoted the natural broadleaved regeneration yielded 9% more timber than BAU before 2056 and 30% less thereafter due to decreasing increments. The softwood scenario resulted in higher energy yield than the energy wood scenario despite the lower energy content of softwood. Retaining PHT resulted in a reduction of timber harvest (0.055 m3 ha−1 yr−1 per habitat tree) and higher harvesting costs. Continuous cover management yielded moderate timber amounts throughout the simulation period, yet sustainably. Considering climate change, we discuss the risks associated with favoring drought- and disturbance-susceptible conifers at low elevations and emphasize that continuous cover management must allow for the regeneration of drought-adapted tree species. In conclusion, our simulations show potential for short-term increases in timber mobilization but also that such increases need to be carefully balanced with future forest productivity and other forest ecosystem services.

  相似文献   
69.
Ultrasonic testing is a non-destructive testing method of choice for estimating the anisotropic elastic properties of wood materials. This method is reliable for estimating the Young’s and shear moduli. However, its applicability to Poisson’s ratios remains uncertain. On the other hand, despite their destructive nature, mechanical tests allow a direct measurement of all elastic properties including the Poisson’s ratios. In some cases (e.g. when assessing cultural heritage objects), destructive testing may not be an option. In this work, two types of hardwood walnut (Juglans regia L.) and cherry (Prunus avium L.), which often appear on cultural heritage objects, were tested using both ultrasonic and mechanical testing methods under four different moisture conditions below fibre saturation point. The results show that a higher moisture condition leads to a decrease in material elasticity. For walnut wood, their longitudinal Young’s modulus (\(E_{\rm L}\)) was reduced by 679 MPa under the compression load for a one per cent increase in moisture content. Moreover, three ultrasound data evaluation techniques, which differ in the way they incorporate the Poisson’s ratios (full stiffness inversion, simplified uncorrected, and simplified corrected), were used to estimate the Young’s moduli (E). The main goal is to obtain reliable material parameters using the ultrasound test. As a result, it is concluded that the chosen data evaluation method influences the accuracy of the calculated E. In a certain case, the simplified-corrected method, which requires only one specimen type, gave a closer agreement to mechanical tests (e.g. \(\Delta E_{\rm T}=6\,\%\) deviation on mechanical results). In another case, the full-stiffness-inversion method, which requires four specimen types, gave the best estimation (e.g. \(\Delta E_{\rm L}=2\,\%\)). In this corresponding direction, the simplified-corrected method can only partially reduce the overestimation of the simplified uncorrected from \(\Delta E_{\rm L}=47\) to 32 %. The variation of E produced by different evaluation procedures is due to the different correction factor values, which is a consequence of the variation in \(\nu\).  相似文献   
70.
To study the effects of elevated CO(2) on gas exchange, nonstructural carbohydrate and nutrient concentrations in current-year foliage of 30-year-old Norway spruce (Picea abies (L.) Karst.) trees, branches were enclosed in ventilated, transparent plastic bags and flushed with ambient air (mean 370 &mgr;mol CO(2) mol(-1); control) or ambient air + 340 &mgr;mol CO(2) mol(-1) (elevated CO(2)) during two growing seasons. One branch bag was installed on each of 24 selected trees from control and fertilized plots. To reduce the effect of variation among trees, results from each treated branch were compared with those from a control branch on the same whorl of the same tree. Elevated CO(2) increased rates of light-saturated photosynthesis on average by 55% when measured at the treatment CO(2) concentration. The increase was larger in shoots with high needle nitrogen concentrations than in shoots with low needle nitrogen concentrations. However, shoots grown in elevated CO(2) showed a decrease in photosynthetic capacity compared with shoots grown in ambient CO(2). When measured at the internal CO(2) concentration of 200 &mgr;mol CO(2) mol(-1), photosynthetic rates of branches in the elevated CO(2) treatments were reduced by 8 to 32%. The elevated CO(2) treatment caused a 9 to 20% reduction in carboxylation efficiency and an 18% increase in respiration rates. In response to elevated CO(2), starch, fructose and glucose concentrations in the needles increased on average 33%, whereas concentrations of potassium, nitrogen, phosphorus, magnesium and boron decreased. Needle nitrogen concentrations explained 50-60% of the variation in photosynthesis and CO(2) acclimation was greater at low nitrogen concentrations than at high nitrogen concentrations. We conclude that the enhanced photosynthetic rates found in shoots exposed to elevated CO(2) increased carbohydrate concentrations, which may have a negative feedback on the photosynthetic apparatus and stimulate cyanide-resistant respiration. We also infer that the decrease in nutrient concentrations of needles exposed to elevated CO(2) was the result of retranslocation of nutrients to other parts of the branch or tree.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号