首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2159篇
  免费   107篇
  国内免费   1篇
林业   109篇
农学   132篇
基础科学   5篇
  375篇
综合类   150篇
农作物   281篇
水产渔业   191篇
畜牧兽医   865篇
园艺   33篇
植物保护   126篇
  2023年   15篇
  2022年   39篇
  2021年   52篇
  2020年   36篇
  2019年   40篇
  2018年   54篇
  2017年   65篇
  2016年   61篇
  2015年   65篇
  2014年   94篇
  2013年   122篇
  2012年   163篇
  2011年   171篇
  2010年   113篇
  2009年   121篇
  2008年   145篇
  2007年   138篇
  2006年   152篇
  2005年   87篇
  2004年   86篇
  2003年   79篇
  2002年   77篇
  2001年   68篇
  2000年   39篇
  1999年   26篇
  1998年   14篇
  1997年   3篇
  1996年   5篇
  1995年   7篇
  1994年   5篇
  1993年   4篇
  1992年   10篇
  1991年   4篇
  1990年   13篇
  1989年   13篇
  1988年   7篇
  1987年   5篇
  1985年   6篇
  1981年   3篇
  1978年   3篇
  1976年   2篇
  1975年   3篇
  1974年   7篇
  1973年   10篇
  1971年   3篇
  1970年   2篇
  1968年   2篇
  1966年   4篇
  1949年   2篇
  1929年   2篇
排序方式: 共有2267条查询结果,搜索用时 15 毫秒
101.
Molecular cloning and expression analysis of pig CD81   总被引:1,自引:0,他引:1  
CD81, also known as TAPA-1 (target of antiproliferative antibody 1), is a member of the tetraspanin family of proteins and a component of the B cell co-receptor complex. Several studies have shown that CD81 plays significant roles in a variety of immune responses, including activation of B cells and T cells. In this study, we cloned pig Cd81 cDNA using RT-PCR coupled with rapid amplification of cDNA ends (RACE)-PCR and determined the complete cDNA sequence of pig Cd81. Pig Cd81 cDNA contains an open reading frame (711 bp) encoding 236 amino acids. The identity of pig CD81 with those of human, cattle, rat, and mouse are 90.30%, 92.26%, 86.22%, and 86.22%, respectively. Alignment of the CD81 amino acid sequence with those of mammalian species showed that the large extracellular loop (LEL) is the most divergent, whereas other domains are largely conserved. Pig Cd81 mRNA was detected by RT-PCR in a broad range of tissues, including lymphoid tissues as well as nonlymphoid tissues, indicated variety of cellular functions of CD81 in most pig tissues. Flow cytometry analyses demonstrated that human CD81 antibody recognizes a pig CD81 on the cell surface. Further, immunohistochemistry analysis using human CD81 antibody on pig spleen was revealed that CD81 expression is widely diffused in spleen tissue. Future study will be focused on defining the functional role of CD81 during the course of pig infectious diseases.  相似文献   
102.
103.
This study was conducted to determine if humoral antibody response of foot-and-mouth disease (FMD) vaccine improved in 8-week-old growing pigs born to well-vaccinated sows pre-treated with 60 mg of poly-γ-glutamic acid (γ-PGA) three days before vaccination. Antibody against FMD virus serotype O was measured 0, 2, 4 and 6 weeks post-vaccination, using a PrioCHECK FMDV type O ELISA kit. The results showed that positive antibody reactions against FMDV serotype O antigen among a component of the vaccine significantly increased in response to pre-injection with γ-PGA.  相似文献   
104.

Background

Serotonin (5‐hydroxytryptamine, 5HT) is involved in hypothalamic regulation of energy consumption. Also, the gut microbiome can influence neuronal signaling to the brain through vagal afferent neurons. Therefore, serotonin concentrations in the central nervous system and the composition of the microbiota can be related to obesity.

Objective

To examine adipokine, and, serotonin concentrations, and the gut microbiota in lean dogs and dogs with experimentally induced obesity.

Animals

Fourteen healthy Beagle dogs were used in this study.

Methods

Seven Beagle dogs in the obese group were fed commercial food ad libitum, over a period of 6 months to increase their weight and seven Beagle dogs in lean group were fed a restricted amount of the same diet to maintain optimal body condition over a period of 6 months. Peripheral leptin, adiponectin, 5HT, and cerebrospinal fluid (CSF‐5HT) levels were measured by ELISA. Fecal samples were collected in lean and obese groups 6 months after obesity was induced. Targeted pyrosequencing of the 16S rRNA gene was performed using a Genome Sequencer FLX plus system.

Results

Leptin concentrations were higher in the obese group (1.98 ± 1.00) compared to those of the lean group (1.12 ± 0.07, P = .025). Adiponectin and 5‐hydroytryptamine of cerebrospinal fluid (CSF‐5HT) concentrations were higher in the lean group (27.1 ± 7.28) than in the obese group (14.4 ± 5.40, P = .018). Analysis of the microbiome revealed that the diversity of the microbial community was lower in the obese group. Microbes from the phylum Firmicutes (85%) were predominant group in the gut microbiota of lean dogs. However, bacteria from the phylum Proteobacteria (76%) were the predominant group in the gut microbiota of dogs in the obese group.

Conclusions and Clinical Importance

Decreased 5HT levels in obese group might increase the risk of obesity because of increased appetite. Microflora enriched with gram‐negative might be related with chronic inflammation status in obese dogs.  相似文献   
105.
Mitochondria are necessary for the transition from oocyte to embryo and for early embryonic development. Mitofusin 1 is the main mediator of mitochondrial fusion and homeostasis. We investigated Mitofusin 1 expression levels in porcine somatic cell nuclear transfer (SCNT) embryos. The rate of blastocyst formation in SCNT embryos was reduced significantly compared with that of parthenogenetic activation embryos. SCNT embryos showed significantly decreased Mitofusin 1 expression and mitochondrial membrane potential, while exhibiting increased reactive oxygen species and apoptosis. Mitochondrial functional changes were observed in the SCNT embryos and may be correlated with low levels of Mitofusin 1 to negatively affect development.  相似文献   
106.
Actinobacillus pleuropneumoniae is an infective agent that leads to porcine pleuropneumonia, a disease that causes severe economic losses in the swine industry. Based on the fact that the respiratory tract is the primary site for bacterial infection, it has been suggested that bacterial exclusion in the respiratory tract through mucosal immune induction is the most effective disease prevention strategy. ApxIIA is a vaccine candidate against A. pleuropneumoniae infection, and fragment #5 (aa. 439–801) of ApxIIA contains the major epitopes for effective vaccination. In this study, we used mice to verify the efficacy of intranasal immunization with fragment #5 in the induction of protective immunity against nasal challenge with A. pleuropneumoniae and compared its efficacy with that of subcutaneous immunization. Intranasal immunization of the fragment induced significantly higher systemic and mucosal immune responses measured at the levels of antigen-specific antibodies, cytokine-secreting cells after antigen exposure, and antigen-specific lymphocyte proliferation. Intranasal immunization not only efficiently inhibited the bacterial colonization in respiratory organs, but also prevented alveolar tissue damage in infectious condition similar to that of a contaminated pig. Moreover, intranasal immunization with fragment #5 provided acquired protective immunity against intranasal challenge with A. pleuropneumoniae serotype 2. In addition, it conferred cross-protection against serotype 5, a heterologous pathogen that causes severe disease by ApxI and ApxII secretion. Collectively, intranasal immunization with fragment #5 of ApxIIA can be considered an efficient protective immunization procedure against A. pleuropneumoniae infection.  相似文献   
107.
Background: Gut is a crucial organ for the host’s defense system due to its filtering action of the intestinal membrane from hazardous foreign substances. One strategy to strengthen the gut epithelial barrier function is to upregulate beneficial microflora populations and their metabolites. Sophorolipid(SPL), which is a glycolipid biosurfactant, could increase beneficial microflora and decrease pathogenic bacteria in the gastrointestinal tract.Therefore, herein, we conducted an experiment with b...  相似文献   
108.
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号