Early and accurate diagnosis is a critical first step in mitigating losses caused by plant diseases. An incorrect diagnosis can lead to improper management decisions, such as selection of the wrong chemical application that could potentially result in further reduced crop health and yield. In tomato, initial disease symptoms may be similar even if caused by different pathogens, for example early lesions of target spot (TS) caused by the fungus Corynespora cassicola and bacterial spot (BS) caused by Xanthomonas perforans. In this study, hyperspectral imaging (380–1020 nm) was utilized in laboratory and field (collected by an unmanned aerial vehicle; UAV) settings to detect both diseases. Tomato leaves were classified into four categories: healthy, asymptomatic, early and late disease development stages. Thirty-five spectral vegetation indices (VIs) were calculated to select an optimum set of indices for disease detection and identification. Two classification methods were utilized: (i) multilayer perceptron neural network (MLP), and (ii) stepwise discriminant analysis (STDA). Best wavebands selection was considered in blue (408–420 nm), red (630–650 nm) and red edge (730–750 nm). The most significant VIs that could distinguish between healthy leaves and diseased leaves were the photochemical reflectance index (PRI) for both diseases, the normalized difference vegetation index (NDVI850) for BS in all stages, and the triangular vegetation index (TVI), NDVI850 and chlorophyll index green (Chl green) for TS asymptomatic, TS early and TS late disease stage respectively. The MLP classification method had an accuracy of 99%, for both BS and TS, under field (UAV-based) and laboratory conditions.
Adult and juvenile mobility has a considerable influence on the functioning of marine protected areas. It is recognized that adult and juvenile movement reduces the core benefits of protected areas, namely protecting the full age–structure of marine populations, while at the same time perhaps improving fisheries yield over the no-reserve situation through export of individuals from protected areas. Nevertheless, the study of the consequences of movement on protected area functioning is unbalanced. Significant attention has been paid to the influence of certain movement patterns, such as diffusive movement and home ranges, while the impacts of others, such as density-dependent movements and ontogenetic migrations, have been relatively ignored. Here we review the diversity of density-independent and density-dependent movement patterns, as well as what is currently known about their consequences for the conservation and fisheries effects of marine protected areas. We highlight a number of ‘partially addressed’ issues in marine protected area research, such as the effects of reserves targeting specific life phases, and a number of essentially unstudied issues, such as density-dependent movements, nomadism, ontogenetic migrations, behavioral polymorphism and ‘dynamic’ reserves that adjust location as a realtime response to habitat changes. Assessing these issues will be essential to creating effective marine protected area networks for mobile species and accurately assessing reserve impacts on these species. 相似文献
During the many years of paraquat usage, wide ranges of investigations of its environmental impact have been conducted. Much of this information has been published, but key, long-term field studies have not previously been presented and assessed. The purpose of this review is to bring together and appraise this information. Due to the nature of paraquat residues in soils, the major part (some 99.99%) of a paraquat application that reaches the soil within the typical Good Agricultural Practice (GAP) is strongly adsorbed to soils of a wide variety of textures. This is in equilibrium with an extremely low concentration in soil solution. However, the paraquat in soil solution is intrinsically biodegradable, being rapidly and completely mineralized by soil microorganisms. The deactivation of the biological activity of paraquat in soils, due to sorption, has been investigated thoroughly and systematically. It is recognized that the determination of total soil residues by severe extraction procedures provides no insight into the amount of paraquat biologically available in soil. Consequently, the key assay developed for this purpose, namely, the strong adsorption capacity-wheat bioassay (SAC-WB) method, has proved to be valuable for determination of the adsorption capacity relevant to paraquat for any particular soil. This method has been validated in the field with a series of long-term (>10 years) trials in different regions of the world. These trials have also shown that, following repeated applications of very high levels of paraquat in the field, residues not only reach a plateau but also subsequently decline. This demonstrates that the known biodegradation of paraquat in soil pore water plays an important role in field dissipation. The biological effects of paraquat in the field have been assessed under unrealistically high treatment regimes. These trials have demonstrated that the continued use of paraquat under GAP conditions will have no detrimental effects on either crops or soil-dwelling flora and fauna. Any such effects can occur only under extreme use conditions (above the SAC-WB), which do not arise in normal agricultural practice. 相似文献
This study examines factors affecting the rate and extent of biomass build-up among commercially important groupers, snappers, grunts, parrotfish and surgeonfish in a network of four marine reserves in southwest St. Lucia, Caribbean. Reserves constituted 35% of the total reef area originally available for fishing. Protection was instigated in 1995 after a baseline survey with annual or biennial censuses performed until 2002. Each survey consisted of 114 fifteen minute fish counts in reserves and 83 in fishing grounds, at depths of 5 m and 15 m in a 10 m diameter counting area. Estimates of number and size (cm) of target species were used to calculate fish family biomass. Data were analysed using three-way ANOVA in a before-after-control-impact pairs (BACIP) design. All families increased significantly in biomass over time at nearly all sites. Increases were greater in reserves than fishing grounds, except for grunts, and responses were strongest in parrotfish and surgeonfish. The combined biomass of families more than quadrupled in reserves and tripled in fishing grounds between 1995 and 2002. During this period coral cover declined by 46% in reserves and 35% in fishing grounds. Multiple regression showed that neither habitat characteristics nor habitat deterioration significantly affected rates of biomass build-up. The key factor was protection from fishing, which explained 44% of the variance in biomass growth. A further 28% of the variance was explained by sedimentation, a process known to stress reef invertebrates, significantly reducing the rate of biomass build-up. St. Lucia’s reserves succeeded in producing significant gains to fish stocks despite coral cover and structural complexity falling steeply over the period of the study. 相似文献