首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81011篇
  免费   4521篇
  国内免费   118篇
林业   4267篇
农学   2504篇
基础科学   471篇
  9928篇
综合类   13121篇
农作物   3059篇
水产渔业   3873篇
畜牧兽医   42512篇
园艺   1054篇
植物保护   4861篇
  2018年   1320篇
  2017年   1346篇
  2016年   1190篇
  2015年   1081篇
  2014年   1238篇
  2013年   3504篇
  2012年   2390篇
  2011年   2825篇
  2010年   1815篇
  2009年   1757篇
  2008年   2658篇
  2007年   2585篇
  2006年   2416篇
  2005年   2138篇
  2004年   2045篇
  2003年   2078篇
  2002年   1969篇
  2001年   2315篇
  2000年   2287篇
  1999年   1842篇
  1998年   791篇
  1997年   787篇
  1995年   831篇
  1994年   733篇
  1993年   743篇
  1992年   1519篇
  1991年   1702篇
  1990年   1612篇
  1989年   1636篇
  1988年   1499篇
  1987年   1418篇
  1986年   1500篇
  1985年   1472篇
  1984年   1200篇
  1983年   1124篇
  1982年   745篇
  1979年   1188篇
  1978年   898篇
  1977年   880篇
  1976年   866篇
  1975年   904篇
  1974年   1133篇
  1973年   1101篇
  1972年   1097篇
  1971年   995篇
  1970年   997篇
  1969年   972篇
  1968年   844篇
  1967年   848篇
  1966年   723篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Cañahua (Chenopodium pallidicaule Aellen) is a semi‐domesticated relative of quinoa (Chenopodium quinoa Willd.) with high nutritious quality. It is tolerant to frost, drought, saline soils and pests. One seed yield limitation is seed loss during the maturity stages. Two greenhouse experiments in Denmark and field experiments in Bolivia were carried out to determine seed shattering in landraces and cultivars with different growth habits. 15–21 % of the seed shattering in the fields took place whilst the plants still were flowering and 25–35 % during physiological maturity. Seed shattering varied between locations on the Bolivian Altiplano. Cañahua types with the semi‐prostrate growth (‘lasta’) had the highest seed shattering rate in the greenhouse experiments. The Umacutama landrace had lower seed shattering (1 %) than the cultivar Kullaca (7.2 %) both of the ‘lasta’ type. Under field conditions, the cultivar Illimani with the erect growth (‘saihua’) had the highest seed shattering rate (6.4–33.7 %) at both locations and at four different sowing dates. The Umacutama had the lowest rate (0.5–1.5 %). There were no significant differences between plants of the ‘lasta’ and the ‘saihua’ types. The landrace had significantly less seed loss than the cultivars. However, in the greenhouse, the landrace yield was approximately 25 % lower than the yields of the cultivars. In general, cañahua cultivars had higher yield compared to landraces, but also a higher seed shattering rate. Landraces may be used in breeding programmes to develop high‐yielding cultivars with reduced seed shattering.  相似文献   
992.
Although the effects of cover crops (CC) on various soil parameters have been fully investigated, less is known about the impacts at different stages in CC cultivation. The objective of this study was to quantify the influence of CC cultivation stages and residue placement on aggregates and microbial carbon (Cmic). Additionally, the influence of residue location and crop species on CO2 emissions and leached mineralized nitrogen (Nmin) during the plant degradation period was also investigated. Within an incubation experiment, four CC species were sown in soil columns, with additional columns being kept plant‐free. After plant growth, the columns were frozen (as occurs in winter under field conditions) and then incubated with the plant material either incorporated or surface‐applied. With CC, concentrations of large and medium macroaggregates were twice that of the fallow, confirming positive effects of root growth. Freezing led to a decrease in these aggregate size classes. In the subsequent incubation, the large macroaggregates decreased far more in the samples with CC than in the fallow, leading to similar aggregate size distributions. No difference in Cmic concentration was found among the CC cultivation stages. CO2 emissions were roughly equivalent to the carbon amounts added as plant residues. Comparison of columns with incorporated or surface‐applied residues indicated no consistent pattern of aggregate distribution, CO2 emission or Cmic and Nmin concentrations. Our results suggest that positive effects of CC cultivation are only short term and that a large amount of organic material in the soil could have a greater influence than CC cultivation.  相似文献   
993.
To find a connection between polyamines and various protective effectors involved in the development of cold tolerance, eight different cereal genotypes, including wheat, barley and oat species, were investigated during the acclimation phase to low temperature. Exposure to low temperature induced different changes in the levels of polyamines, and other signalling molecules, such as salicylic acid and abscisic acid, and of other protective compounds, namely flavonols, sugars and antioxidant enzyme activity, and in the lipid composition of certain membrane factions. The most remarkable differences were observed in the oat varieties compared to the other cereal genotypes, which was manifested in the lack of spermidine accumulation and of decrease in trans‐Δ3‐hexadecanoic acid content, in lower initial and not cold‐inducible abscisic acid content and guaiacol peroxidase activity after cold treatment. Correlation analysis revealed that spermidine shows strong positive relationship with flavonols, abscisic acid and ascorbate peroxidase, while was in negative relationship with trans‐Δ3‐hexadecanoic acid. These results suggest that spermidine may have a crucial role in the cold acclimation signalling processes in cereals.  相似文献   
994.
Susceptibility of crops to drought may change under atmospheric CO2 enrichment. We tested the effects of CO2 enrichment and drought on the older malting barley cultivar Golden Promise (GP) and the recent variety Bambina (BA). Hypothesizing that CO2 enrichment mitigates the adverse effects of drought and that GP shows a stronger response to CO2 enrichment than BA, plants of both cultivars were grown in climate chambers. Optimal and reduced watering levels and two CO2 concentrations (380 and 550 ppm) were used to investigate photosynthetic parameters, growth and yield. In contrast to expectations, CO2 increased total plant biomass by 34 % in the modern cultivar while the growth stimulation was not significant in GP. As a reaction to drought, BA showed reduced biomass under elevated CO2, which was not seen in GP. Grain yield and harvest index (HI) were negatively influenced by drought and increased by CO2 enrichment. BA formed higher grain yield and had higher water‐use efficiency of grain yield and HI compared to GP. CO2 fertilization compensated for the negative effect of drought on grain yield and HI, especially in GP. Stomatal conductance proved to be the gas exchange parameter most sensitive to drought. Photosynthetic rate of BA showed more pronounced reaction to drought compared to GP. Overall, BA turned out to respond more intense to changes in water supply and CO2 enrichment than the older GP.  相似文献   
995.
Resource polymorphism may play an important role in the process of speciation. The Arctic char (Salvelinus alpinus) exhibits great phenotypic and genetic diversity across its range, making it an ideal species for studies of resource polymorphism and divergence. Here, we investigated genetic variation at 11 microsatellite loci among 287 Arctic char from five isolated yet proximate postglacial lakes in south‐western Alaska that were previously examined for resource polymorphism. Significant differences in pairwise FST were detected among all lakes (range from 0.05 to 0.28, all < 0.02). In one lake (Lower Tazimina Lake), we found evidence for two genetic groups of char and for significant differences in the distribution of microsatellite variability among at least two of the three previously described body size morphotypes (‘large’‐, ‘medium’‐, and ‘small’‐bodied char; maximum FST = 0.09; differences in admixture proportions). We also found a significant association between genetic admixture proportions and gill raker counts among body size morphs (r = ?0.73, < 0.001). Our data represent the first record of genetically distinct sympatric morphs of Arctic char in Alaska and provide further evidence that differences in morphology associated with feeding (gill rakers) and growth trajectories reflect niche diversification and promote genetic divergence in Holarctic populations of Arctic char.  相似文献   
996.
997.
Soil compaction impacts growing conditions for plants: it increases the mechanical resistance to root growth and modifies the soil pore system and consequently the supply of water and oxygen to the roots. The least limiting water range (LLWR) defines a range of soil water contents within which root growth is minimally limited with regard to water supply, aeration and penetration resistance. The LLWR is a function of soil bulk density (BD), and hence directly affected by soil compaction. In this paper, we present a new model, ‘SoilFlex‐LLWR’, which combines a soil compaction model with the LLWR concept. We simulated the changes in LLWR due to wheeling with a self‐propelled forage harvester on a Swiss clay loam soil (Gleyic Cambisol) using the new SoilFlex‐LLWR model, and compared measurements of the LLWR components as a function of BD with model estimations. SoilFlex‐LLWR allows for predictions of changes in LLWR due to compaction caused by agricultural field traffic and therefore provides a quantitative link between impact of soil loading and soil physical conditions for root growth.  相似文献   
998.
As a result of the important role played by phosphorus (P) in surface water eutrophication, the susceptibility of soils to release P requires evaluation. The degree of phosphorus saturation, assessed by oxalate extraction (DPSox), has been used as an indicator. However, most laboratories do not include DPSox in routine soil tests because of cost and time. This study evaluates the suitability of the ammonium acetate extraction in the presence of EDTA (AAEDTA), the standard soil test P (STP) in Wallonia (Southern Belgium), to predict DPSox; we also compared it with the Mehlich 3 extraction. Ninety‐three topsoil samples were collected in agricultural soils throughout Wallonia. Good correlations were found between the AAEDTA and the Mehlich 3 methods for P, Fe and Al (r = 0.85, 0.77 and 0.86, respectively). An exponential relationship was found between PAAEDTA and DPSox. Results of principal component analysis and regression demonstrated that STP can be used to predict DPSox (r = 0.93) after logarithmic transformation. Soil test Al was also a good indicator of the P sorption capacity (PSCox) of soils (r = 0.86). Including the clay fraction in regression equations only slightly improved the prediction of PSCox (r = 0.90), while other readily available data (such as pH or organic carbon) did not significantly improve either DPSox or PSCox predictions.  相似文献   
999.
Water scarcity is a major constraint limiting grain legume production particularly in the arid and semi‐arid tropics. Different climate models have predicted changes in rainfall distribution and frequent drought spells for the future. Although drought impedes the productivity of grain legumes at all growth stages, its occurrence during reproductive and grain development stages (terminal drought) is more critical and usually results in significant loss in grain yield. However, the extent of yield loss depends on the duration and intensity of the stress. A reduction in the rate of net photosynthesis, and poor grain set and grain development are the principal reasons for terminal drought‐induced loss in grain yield. Insight into the impact and resistance mechanism of terminal drought is required for effective crop improvement programmes aiming to improve resistance to terminal drought in grain legumes. In this article, the impact of terminal drought on leaf development and senescence, light harvesting and carbon fixation, and grain development and grain composition is discussed. The mechanisms of resistance, management options, and innovative breeding and functional genomics strategies to improve resistance to terminal drought in grain legumes are also discussed.  相似文献   
1000.
The cup plant (Silphium perfoliatum L.) is discussed as an alternative energy crop for biogas production in Germany due to its ecological benefits over continuously grown maize. Moreover, a certain drought tolerance is assumed because of its intensive root growth and the dew water collection by the leaf cups, formed by fused leaf pairs. Therefore, the aim of this study was to estimate evapotranspiration (ET ), water‐use efficiency (WUE ) and the relevance of the leaf cups for the cup plant's water balance in a 2‐year field experiment. Parallel investigations were conducted for the two reference crops maize (high WUE ) and lucerne‐grass (deep and intensive rooting) under rainfed and irrigated conditions. Root system performance was assessed by measuring water depletion at various soil depths. Transpiration‐use efficiency (TUE ) was estimated using a model approach. Averaged over the 2 years, drought‐related above‐ground dry matter reduction was higher for the cup plant (33 %) than for the maize (18 %) and lucerne‐grass (14 %). The WUE of the cup plant (33 kg ha?1 mm?1) was significantly lower than for maize (50 kg ha?1 mm?1). The cup plant had a lower water uptake capacity than lucerne‐grass. Cup plant dry matter yields as high as those of maize will only be attainable at sites that are well supplied with water, be it through a large soil water reserve, groundwater connection, high rainfall or supplemental irrigation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号