全文获取类型
收费全文 | 268篇 |
免费 | 5篇 |
专业分类
林业 | 30篇 |
农学 | 4篇 |
87篇 | |
综合类 | 30篇 |
农作物 | 7篇 |
水产渔业 | 7篇 |
畜牧兽医 | 82篇 |
园艺 | 8篇 |
植物保护 | 18篇 |
出版年
2021年 | 2篇 |
2020年 | 3篇 |
2019年 | 4篇 |
2018年 | 5篇 |
2017年 | 1篇 |
2016年 | 5篇 |
2015年 | 1篇 |
2014年 | 7篇 |
2013年 | 9篇 |
2012年 | 16篇 |
2011年 | 21篇 |
2010年 | 8篇 |
2009年 | 11篇 |
2008年 | 12篇 |
2007年 | 19篇 |
2006年 | 12篇 |
2005年 | 17篇 |
2004年 | 29篇 |
2003年 | 15篇 |
2002年 | 12篇 |
2001年 | 4篇 |
2000年 | 4篇 |
1999年 | 2篇 |
1998年 | 3篇 |
1997年 | 1篇 |
1996年 | 3篇 |
1994年 | 3篇 |
1993年 | 4篇 |
1992年 | 5篇 |
1991年 | 3篇 |
1990年 | 5篇 |
1989年 | 2篇 |
1988年 | 1篇 |
1987年 | 2篇 |
1983年 | 1篇 |
1979年 | 1篇 |
1978年 | 3篇 |
1975年 | 1篇 |
1972年 | 1篇 |
1971年 | 2篇 |
1970年 | 1篇 |
1969年 | 3篇 |
1966年 | 3篇 |
1938年 | 1篇 |
1933年 | 5篇 |
排序方式: 共有273条查询结果,搜索用时 15 毫秒
51.
Although classical genetic and biochemical approaches have identified hundreds of proteins that function in the dynamic remodeling of cell shape in response to upstream signals, there is currently little systems-level understanding of the organization and composition of signaling networks that regulate cell morphology. We have developed quantitative morphological profiling methods to systematically investigate the role of individual genes in the regulation of cell morphology in a fast, robust, and cost-efficient manner. We analyzed a compendium of quantitative morphological signatures and described the existence of local signaling networks that act to regulate cell protrusion, adhesion, and tension. 相似文献
52.
Identification and characterization of international Fusarium head blight screening nurseries of wheat at CIMMYT, Mexico 总被引:1,自引:0,他引:1
Xinyao He Pawan K. Singh Etienne Duveiller Norbert Schlang Susanne Dreisigacker Ravi P. Singh 《European journal of plant pathology / European Foundation for Plant Pathology》2013,136(1):123-134
Fusarium head blight (FHB) is a major threat to wheat production globally, causing not only yield losses but also food and feed contamination. FHB research began at the International Maize and Wheat Improvement Center (CIMMYT) in the early 1980’s, and since then, large-scale FHB screening has been conducted to identify and incorporate new resistance genes into elite CIMMYT germplasm. Promising lines with good FHB resistance were regularly compiled as a Fusarium Head Blight Screening Nursery (FHBSN) and distributed worldwide. The first FHBSN was assembled in 1985, and the most recent two were the 13th and 14th FHBSN that were released in 2011 and 2012, respectively. Candidate lines for a FHBSN came mainly from different CIMMYT wheat breeding programs and were tested for three consecutive years before being included in an FHBSN. FHBSN screening was conducted under strictly standardized field conditions at El Batán, where CIMMYT headquarters is located, using artificial inoculation of F. graminearum strains, whose aggressiveness and DON chemotypes had been previously identified. FHB index was scored at 31 days after inoculation for all lines and DON concentration was measured only for elite lines in their 2nd and 3rd year of evaluation. Haplotyping is a new tool for genetic characterization of FHBSN entries and helps to identify new resistance sources with novel resistance genes and to better target crosses toward diversifying and/or pyramiding resistance. The 13th FHBSN was taken as an example in this paper to show the procedure and strategy for the development of new FHB resistant lines. 相似文献
53.
The relationship between the physicochemical properties (molar volume, partition coefficient, and dissociation constant) of slow-acting systemic postemergence xenobiotics and their uptake and translocation to the sites of action was investigated using the nonlinear, dynamic simulation model ERMESSE. When the pKa was held constant at 4.0, the model enables the prediction of the uptake of a systemic xenobiotic as a function of its partition coefficient and molar volume. The model also considered the effects of the physicochemical properties of a systemic xenobiotic on its long-distance translocation within the vascular tissues. For instance, when the log Kow and pKa were held constant at 1.5 and 6.0, respectively, the model predicted a higher translocation rate (55%) for molecules with a small (e.g., MV = 100 cm3 mol−1) as opposed to a large (e.g., MV = 300 cm3 mol−1, 33%) molar volume. In addition, the theoretical predictions from the ERMESSE model showed that any xenobiotic with a molar volume not exceeding 300 cm3 mol−1 could provide an uptake ?50% and a translocation rate ?25% when its log Kow is between −0.5 and 2.5 and its pKa is between 0.0 and 8.0. 相似文献
54.
Andrew Plant Achim Harder Norbert Mencke Heinz-Jürgen Bertram 《Pest management science》1996,48(4):351-358
7-Hydroxy-5-oxo-5H-thieno[3,2-b]pyran-6-carboxanilides and -6-thio-carboxanilides represent a novel series of anthelmintic compounds, with broad-spectrum activity against important parasitic nematodes in sheep and dogs. In particular, an improved efficacy against Trichostrongylus colubriformis in sheep over the related 3-carbamoyl-4-hydroxycoumarins has been noted. New synthetic routes to the key intermediate, 7-hydroxythieno[3,2-b]pyran-5-one, have been developed. 相似文献
55.
56.
Chantal?Le Marié Norbert?Kirchgessner Patrick?Flütsch Johannes?Pfeifer Achim?Walter Andreas?HundEmail author 《Plant methods》2016,12(1):40
Background
Phenotyping of genotype-by-environment interactions in the root-zone is of major importance for crop improvement as the spatial distribution of a plant’s root system is crucial for a plant to access water and nutrient resources of the soil. However, so far it is unclear to what extent genetic variations in root system responses to spatially varying soil resources can be utilized for breeding applications. Among others, one limiting factor is the absence of phenotyping platforms allowing the analysis of such interactions.Results
We developed a system that is able to (a) monitor root and shoot growth synchronously, (b) investigate their dynamic responses and (c) analyse the effect of heterogeneous N distribution to parts of the root system in a split-nutrient setup with a throughput (200 individual maize plants at once) sufficient for mapping of quantitative trait loci or for screens of multiple environmental factors. In a test trial, 24 maize genotypes were grown under split nitrogen conditions and the response of shoot and root growth was investigated. An almost double elongation rate of crown and lateral roots was observed under high N for all genotypes. The intensity of genotype-specific responses varied strongly. For example, elongation of crown roots differed almost two times between the fastest and slowest growing genotype. A stronger selective root placement in the high-N compartment was related to an increased shoot development indicating that early vigour might be related to a more intense foraging behaviour.Conclusion
To our knowledge, RADIX is the only system currently existing which allows studying the differential response of crown roots to split-nutrient application to quantify foraging behaviour in genome mapping or selection experiments. In doing so, changes in root and shoot development and the connection to plant performance can be investigated.57.
58.
To simulate a future ion input reduction scenario in forests, a large scale field experiment was set up in a (1999) 66‒year‒old Norway spruce plantation at Solling, central Germany. Throughfall input of H+, SO42—, and N‒compounds is artificially reduced by means of a permanent roof construction below the canopy and a de‒ionizing equipment since 1991. Here we present long term soil solution records for SO42—, NO3—, Al3+ and the pH of the 10 cm mineral soil sampling depth. A significant decrease in ion concentrations since the start of the treatment is observed, but no change of the soil solution pH. Even in the fourth year pH values remained well within the aluminium buffer range (pH < 4.2). Three years after the start of the experiment (July 1994) it was examined whether microbial biomass (Cmic), specific activity (heat production per unit biomass), and the percentage of Cmic in organic C material indicated any changes. Furthermore chemical standard parameters (CEC, base saturation, pH) were analyzed for all soil samples. Results indicate that despite of drastic decreases of soil solution ion concentrations in the upper soil horizons microbial parameters were not affected and that the soil solid phase is not deacidified by the treatment until now. 相似文献
59.
Isotopically exchangeable P (IEP) is usually considered to be completely plant‐available and the major source of P for plant uptake. The aim of the present study is to test whether plants can, besides IEP, also use non‐IEP and if part of the IEP has an equilibrium concentration in soil solution which is below the minimum concentration, CLmin, and can therefore not be taken up by plants. A pot experiment was carried out with maize for two years on two soils, an acid sandy and a neutral loamy soil, either without P fertilizer or fertilized with ten P sources of different solubility. Throughout both years of the study, pots were kept moist either without plants or planted twice with maize (Zea mays L., cv. Athletico). At the end of the experiment, plant P uptake, P concentration in the soil solution (CL), and P accessible to isotopic exchange within 5 d (E5d) were measured. Plant growth decreased the E5d which was about equal to P uptake by maize for most treatments in the acid soil. But for some treatments, i.e., five in the acid and eight in the neutral soil, P uptake was up to 50% larger than the decrease of E5d, indicating that plants had, besides IEP, also used P from non‐IEP sources. At adequate P supply, both soils had an E5d of about 100 mg P (kg soil)–1, but about 30 to 40 mg kg–1 of this IEP had an equilibrium P concentration in the soil solution below CLmin of 0.1 μmol L–1 at which P would actually not be plant‐available. This study shows that plants take up P mainly from IEP, but not the whole IEP is plant‐available. Furthermore, plants may also use P from non‐IEP sources. 相似文献
60.
Only a minor part of Maillard reaction studies in the literature focused on the reaction between carbohydrates and peptides. Therefore, in continuation of a previous study in which the influence of the peptide C-terminal amino acid was investigated, this study focused on the influence of the peptide N-terminal amino acid on the production of pyrazines in model reactions of glucose, methylglyoxal, or glyoxal. Nine different dipeptides and three tripeptides were selected. It was shown that the structure of the N-terminal amino acid is determinative for the overall pyrazine production. Especially, the production of 2,5(6)-dimethylpyrazine and trimethylpyrazine was low in the case of proline, valine, or leucine at the N-terminus, whereas it was very high for glycine, alanine, or serine. In contrast to the alkyl-substituted pyrazines, unsubstituted pyrazine was always produced more in the case of experiments with free amino acids. It is clear that different mechanisms must be responsible for this observation. This study clearly illustrates the capability of peptides to produce flavor compounds such as pyrazines. 相似文献