首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5563篇
  免费   226篇
  国内免费   14篇
林业   401篇
农学   233篇
基础科学   39篇
  660篇
综合类   580篇
农作物   214篇
水产渔业   218篇
畜牧兽医   3037篇
园艺   45篇
植物保护   376篇
  2019年   45篇
  2018年   68篇
  2017年   102篇
  2016年   87篇
  2015年   58篇
  2014年   81篇
  2013年   206篇
  2012年   157篇
  2011年   180篇
  2010年   112篇
  2009年   123篇
  2008年   220篇
  2007年   216篇
  2006年   183篇
  2005年   205篇
  2004年   180篇
  2003年   185篇
  2002年   174篇
  2001年   205篇
  2000年   199篇
  1999年   185篇
  1998年   54篇
  1997年   73篇
  1996年   66篇
  1995年   57篇
  1994年   47篇
  1993年   63篇
  1992年   127篇
  1991年   136篇
  1990年   135篇
  1989年   138篇
  1988年   108篇
  1987年   122篇
  1986年   103篇
  1985年   97篇
  1984年   93篇
  1983年   67篇
  1982年   39篇
  1979年   81篇
  1978年   63篇
  1977年   73篇
  1976年   46篇
  1975年   69篇
  1974年   85篇
  1973年   75篇
  1972年   75篇
  1971年   56篇
  1970年   70篇
  1969年   51篇
  1968年   44篇
排序方式: 共有5803条查询结果,搜索用时 15 毫秒
961.
The effect of plant-derived humic acid (PDHA) and coal-derived humic acid (CDHA) on wheat growth was tested on two alkaline calcareous soils in pots. Humic acid derived from plant and coal materials was applied at the rate 0 (control), 50 and 100 kg/ha to wheat in pots carrying two soils viz. clayey loam soil and sandy loam soil separately. Data was collected on plant growth parameters such as spike weight, grain and straw weight, and plant nutrients (macronutrients and micronutrients). Results showed that spike weight increased by 19%, 15%, and 26%, and 11% with application of PDHA at the rate of 50 and 100 mg/kg in clayey loam and sandy loam soil, respectively. Grain yield show an increase of 21% and 11% over control with application of PDHA and CDHA at the rate of 50 mg/kg on both soils, respectively, and 10% and 22% with application of PDHA and CDHA at the rate of 100 mg/kg on both soils.  相似文献   
962.
963.
盐碱地土壤:氧化亚氮和二氧化碳排放的潜在来源?   总被引:2,自引:1,他引:1  
Increasing salt-affected agricultural land due to low precipitation,high surface evaporation,irrigation with saline water,and poor cultural practices has triggered the interest to understand the influence of salt on nitrous oxide(N_2O) and carbon dioxide(CO_2)emissions from soil.Three soils with varying electrical conductivity of saturated paste extract(EC_e)(0.44-7.20 dS m~(-1)) and sodium adsorption ratio of saturated paste extract(SARe)(1.0-27.7),two saline-sodic soils(S2 and S3) and a non-saline,non-sodic soil(S1),were incubated at moisture levels of 40%,60%,and 80%water-filled pore space(WFPS) for 30 d,with or without nitrogen(N)fertilizer addition(urea at 525 μg g~(-1) soil).Evolving CO_2 and N2 O were estimated by analyzing the collected gas samples during the incubation period.Across all moisture and N levels,the cumulative N_2O emissions increased significantly by 39.8%and 42.4%in S2 and S3,respectively,compared to S1.The cumulative CO_2 emission from the three soils did not differ significantly as a result of the complex interactions of salinity and sodicity.Moisture had no significant effect on N_2O emissions,but cumulative CO_2 emissions increased significantly with an increase in moisture.Addition of N significantly increased cumulative N_2O and CO_2 emissions.These showed that saline-sodic soils can be a significant contributor of N_2O to the environment compared to non-saline,non-sodic soils.The application of N fertilizer,irrigation,and precipitation may potentially increase greenhouse gas(N2O and CO_2) releases from saline-sodic soils.  相似文献   
964.
Cadmium (Cd) is a nonessential and toxic element because it inhibits the growth and development of plants and is dangerous for end consumer. It enters in the human food chain through food crops. Application of plant nutrients such as zinc (Zn) and gypsum is a viable and cheap strategy to minimize its accumulation in edible plant portions. Therefore, this investigation was conducted to determine the effectiveness of Zn and gypsum against Cd accumulation in wheat. The results showed that Cd toxicity considerably decreased the plant growth, physiological activities, and yield attributes and increased the Cd accumulation in root, shoot, and grain, while application of Zn and gypsum remarkably increased the growth and yield and decreased the Cd accumulation in plant parts in Cd-contaminated soil. The results also depicted that application of Zn showed better results as compared to gypsum. In conclusion, we can say that application of Zn and gypsum remarkably ameliorated the Cd toxicity and decreased its accumulation in wheat, grown in Cd-contaminated soil.  相似文献   
965.
966.
967.
A large number of soybean (Glycine max L.) genotypes of diverse growth habit and adaptive characters were used in the experiment. Soil salinity-induced changes in nine morpho-physiological characters of 30-day-old seedlings of 170 soybean genotypes were compared in the study. The first and second principal components (PC) of principal component analysis (PCA) results accounted for 97 and 2.5%, respectively, of the total variations of soybean genotypes. The variation for the first PC was composed mainly of relative total dry weight (DW), relative shoot dry weight, as well as petiole dry weight. There were four clusters distinguished in the cluster analysis. The genotypes in cluster IV performed better in respect to relative total dry weight and relative shoot dry weight and hence having salt tolerance. The genotypes clusters III performed very poorly and those of clusters II and I were moderate to poor. D2 analysis indicated that the clusters differed significantly from each other. Discriminant function analysis (DFA) again asserts strongly that more than 92% of the genotypes were correctly assigned to clusters. Both PCA and DFA confirmed that the relative total DW followed by shoot and petiole DW were the major discriminatory variables, and the root DW were the secondary important variables to distinguish genotypes into groups. In this study, multivariate analyses were used in identifying the soybean genotypes of desirable traits for salt tolerance.  相似文献   
968.
Winter nitrogen use in deciduous species is largely uncharacterized. We investigated nitrate uptake in the fine roots of a deciduous oak (Quercus serrata Thunb. ex. Murray). We conducted a 15N-labeling experiment using saplings of Q. serrata in the winter. During three weeks of labeled nitrate application, the concentration of 15N in the fine roots increased significantly. The amount of nitrogen absorbed, as nitrate, was 1.16 ± 1.02 mg N g DW−1, equivalent to 7.6 ± 5.8% of the total nitrogen content. Our results indicate that Q. serrata saplings have significant potential for nitrate uptake in the fine roots in midwinter (i.e., in the absence of leaves). Although a significant amount of nitrogen applied as nitrate was accumulated, nitrate concentration in the fine roots remained low during the labeling period. Furthermore, significant nitrate reductase activity was detected. These data suggest that Q. serrata saplings can assimilate nitrate in the fine roots in midwinter.  相似文献   
969.
970.
Pulsating aurora, a spectacular emission that appears as blinking of the upper atmosphere in the polar regions, is known to be excited by modulated, downward-streaming electrons. Despite its distinctive feature, identifying the driver of the electron precipitation has been a long-standing problem. Using coordinated satellite and ground-based all-sky imager observations from the THEMIS mission, we provide direct evidence that a naturally occurring electromagnetic wave, lower-band chorus, can drive pulsating aurora. Because the waves at a given equatorial location in space correlate with a single pulsating auroral patch in the upper atmosphere, our findings can also be used to constrain magnetic field models with much higher accuracy than has previously been possible.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号