首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3454篇
  免费   522篇
  国内免费   11篇
林业   195篇
农学   325篇
基础科学   38篇
  656篇
综合类   394篇
农作物   138篇
水产渔业   385篇
畜牧兽医   1399篇
园艺   71篇
植物保护   386篇
  2023年   55篇
  2022年   20篇
  2021年   13篇
  2020年   42篇
  2019年   95篇
  2018年   193篇
  2017年   180篇
  2016年   160篇
  2015年   152篇
  2014年   157篇
  2013年   191篇
  2012年   200篇
  2011年   237篇
  2010年   206篇
  2009年   165篇
  2008年   205篇
  2007年   187篇
  2006年   169篇
  2005年   159篇
  2004年   114篇
  2003年   106篇
  2002年   63篇
  2001年   140篇
  2000年   147篇
  1999年   93篇
  1998年   45篇
  1997年   44篇
  1996年   36篇
  1995年   31篇
  1994年   22篇
  1993年   15篇
  1992年   36篇
  1991年   38篇
  1990年   39篇
  1989年   23篇
  1988年   29篇
  1987年   19篇
  1986年   18篇
  1985年   15篇
  1984年   9篇
  1983年   10篇
  1979年   8篇
  1978年   4篇
  1971年   4篇
  1967年   4篇
  1966年   6篇
  1956年   4篇
  1903年   4篇
  1893年   4篇
  1892年   7篇
排序方式: 共有3987条查询结果,搜索用时 15 毫秒
931.
Angiotensin converting enzyme (ACE) inhibitory peptides prepared from soy protein by the action of alcalase enzyme was tested for its hypotensive effect on spontaneously hypertensive rats (SHR). Captopril, an ACE inhibitor used widely for hypertension treatment, was also applied in comparison. A significant (p < 0.05) decrease in systolic blood pressure of SHR was observed when soy ACE inhibitory peptides were orally administrated at three different dose levels (100, 500, and 1000 mg/kg of body weight/day), whereas little change occurred in the blood pressure of normotensive rats even at the highest dose. After a month-long feeding, blood pressure readings of SHR fell by approximately 38 mmHg from the original level at the lowest dose; a steadily and progressively hypotensive effect existed for these soy ACE inhibitory peptides administration groups. An obvious fluctuation was observed at the third week, although Captopril had a stronger hypotensive effect. The ACE activity of serum, aorta and lung, and lipid content of serum of SHR upon administration of soy ACE inhibitory peptides did not show a significant difference from that of the control group, whereas the serum ACE activity increased and the aorta ACE activity decreased significantly (p < 0.05) for the Captopril group. Serum Na(+) concentration decreased significantly in both the peptides-treated groups and the Captopril-treated group in comparison with the control group, whereas no lowering effect was observed for serum K(+) and serum Ca(2+) concentrations. These results suggested that the hypotensive effect of ACE inhibitory peptides derived from soy protein could be at least partly attributed to the action on salt/water balance.  相似文献   
932.
Enzymatic treatments known to induce the gelation of feruloylated arabinoxylans solutions were applied to tissue strips isolated from peripheral layers of wheat grain to tentatively produce in situ arabinoxylan reticulation. The treatments by horseradish peroxidase (HRP) and manganese dependent peroxidase (MnP) induced a dimerization of ferulic acid (FA) in wheat bran with concomitant decrease of arabinoxylan solubility. Similar results were obtained, but to a lesser extent, by simple incubation of bran strips in water, suggesting the action of endogenous peroxidases. The fact that these treatments proved to be ineffective on the isolated aleurone layer and pericarp suggested that dimerization occurred mostly at the aleurone-pericarp interface. In addition, the MnP system generated a consumption of monomer and dimer of ferulic acid in the pericarp, perhaps due to their incorporation into lignin. Micro-mechanical tests using DMTA were performed on isolated tissue strips and showed that oxidation of wheat bran increased their mechanical strength (increase of stress and strain to rupture).  相似文献   
933.
Serious water deficits and deteriorating environmental quality are threatening agricultural sustainability in the North China Plain (NCP). This paper addresses spatial and temporal availability of water resources in the NCP, identifies the effects of soil management, irrigation timing and amounts, and crop genetic improvement on water use efficiency (WUE), and then discusses knowledge gaps and research priorities to further improve WUE. Enhanced irrigation and soil nutrient (mainly nitrogen) management are the focal issues in the NCP for enhancing WUE, which are shown to increase WUE by 10-25% in a wheat-maize double cropping system. Crop breeding has also contributed to increased of WUE and is expected to play an important role in the future as genetic and environmental interactions are understood better. Agricultural system models and remote sensing have been used to evaluate and improve current agronomic management practices for increasing WUE at field and regional scales. The low WUE in farmer's fields compared with well-managed experimental sites indicates that more efforts are needed to transfer water-saving technologies to the farmers. We also identified several knowledge gaps for further increasing WUE in the NCP by: (1) increasing scientific understanding of the effects of agronomic management on WUE across various soil and climate conditions; (2) quantifying the interaction between soil water and nitrogen in water-limited agriculture for improving both water and nitrogen-use efficiency; (3) improving irrigation practices (timing and amounts) based on real-time monitoring of water status in soil-crop systems; and (4) maximizing regional WUE by managing water resources and allocation at regional scales.  相似文献   
934.
We have conducted a long-term (from 1956 to 1999) rehabilitation experiment on mobile sand dunes in Tengger Desert, China, to investigate the chronological development of microbiotic soil crusts. We systematically analyzed the progression and development of the soil crusts by investigating the plant cover (herbs and shrubs), and some microorganism (mosses and algae), physical (particle size, saturated hydraulic conductivity and saturated water content) and chemical (major plant nutrients and organic matter) soil particles. The Limburg Soil Erosion Model was used to simulate infiltration and runoff. Three stages of microbiotic crust development occurred during the progressive stabilization of unconsolidated aeolian dunes, from 1956 to the present day: (1) raindrop impact and development of a non-biological crust; (2) crust enriched with mosses; (3) crust dominated by abundant algae, mosses and liverworts. It is considered that the most significant driving factor in the ecological development of microbiotic crusts in the Tengger Desert is the spatial variability of rainfall infiltration depth within the various soil layers occurring on, for example, dune top, leeward slopes, inter-dune depression (hollow) and windward slopes, immediately after a single individual rainfall event. Crust development leads to a change from shrubs to herbs because of decreased soil moisture in deeper soil layers.  相似文献   
935.
Phosphorus losses by surface runoff from agricultural lands have been of public concern due to increasing P contamination to surface waters. Five representative commercial citrus groves (C1-C5) located in South Florida were studied to evaluate the relationships between P fractions in soils, surface runoff P, and soil phosphatase activity. A modified Hedley P sequential fractionation procedure was employed to fractionate soil P. Soil P consisted of mainly organically- and Ca/Mg-bound P fractions. The organically-bound P (biological P, sum of organic P in the water, NaHCO3 and NaOH extracts) was dominant in the acidic sandy soils from the C2 and C3 sites (18% and 24% of total soil P), whereas the Ca/Mg-bound P (HCl-extractable P) accounted for 45-60% of soil total P in the neutral and alkaline soils (C1, C4 and C5 soils). Plant-available P (sum of water and NaHCO3 extractable P fractions) ranged from 27 to 61 mg P kg−1 and decreased in the order of C3>C4>C1>C2>C5. The mean total P concentrations (TP) in surface runoff water samples ranged from 0.51 to 2.64 mg L−1. Total P, total dissolved P (TDP), and PO43−-P in surface runoff were significantly correlated with soil biological P and plant-available P forms (p<0.01), suggesting that surface runoff P was directly derived from soil available P pools, including H2O- and NaHCO3- extractable inorganic P, water-soluble organic P, and NaHCO3- and NaOH-extractable organic P fractions, which are readily mineralized by soil microorganisms and/or enzyme mediated processes. Soil neutral (55-190 mg phenol kg−1 3 h−1) and natural (measured at soil pH) phosphatase activities (77-295 mg phenol kg−1 3 h−1) were related to TP, TDP, and PO43−-P in surface runoff, and plant-available P and biological P forms in soils. These results indicate that there is a potential relationship between soil P availability and phosphatase activities, relating to P loss by surface runoff. Therefore, the neutral and natural phosphatase activities, especially the natural phosphatase activity, may serve as an index of surface runoff P loss potential and soil P availability.  相似文献   
936.
The gene encoding pyrethroid-hydrolyzing esterase (EstP) from Klebsiella sp. strain ZD112 was cloned into Escherichia coli and sequenced. A sequence analysis of the DNA responsible for the estP gene revealed an open reading frame of 1914 bp encoding for a protein of 637 amino acid residues. No similarities were found by a database homology search using the nucleotide and deduced amino acid sequences of the esterases and lipases. EstP was heterologously expressed in E. coli and purified. The molecular mass of the native enzyme was approximately 73 kDa as determined by gel filtration. The results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the deduced amino acid sequence of EstP indicated molecular masses of 73 and 73.5 kDa, respectively, suggesting that EstP is a monomer. The purified EstP not only degraded many pyrethroid pesticides and the organophosphorus insecticide malathion, but also hydrolyzed rho-nitrophenyl esters of various fatty acids, indicating that EstP is an esterase with broad substrates. The K(m) for trans- and cis-permethrin and k(cat)/K(m) values indicate that EstP hydrolyzes both these substrates with higher efficiency than the carboxylesterases from resistant insects and mammals. The catalytic activity of EstP was strongly inhibited by Hg2+, Ag+, and rho-chloromercuribenzoate, whereas a less pronounced effect (3-8% inhibition) was observed in the presence of divalent cations, the chelating agent EDTA, and phenanthroline.  相似文献   
937.
Despite the well-recognized importance of grain yield in high-oil maize (Zea mays L.) breeding and production, few studies have reported the application of QTL mapping of such traits. An inbred line of high-oil maize designated ‘GY220’ was crossed with two dent maize inbred lines to generate two connected F2:3 populations with 284 and 265 F2:3 families. Our main objective was to evaluate the influence of genetic background on QTL detection of grain yield traits through comparisons between the F2:3 populations. The field experiments were conducted during the spring in Luoyang and summer in Xuchang, Henan, China. Two genetic linkage maps were constructed with a genetic distance of 2111.7 and 2298.5 cM using 185 and 173 polymorphic SSR markers, respectively. In total, 18 and 15 QTL were detected for six grain yield traits in the two populations. Only one common QTL marker was shared between the two populations. A QTL cluster associated with five traits was identified at bin 1.05–1.06, including the shared QTL for 100GW, which demonstrated the largest effect (16.7%). Among the detected QTL, 12 digenic interactions were identified. Our results reflect the substantial influence of dent maize genetic background on QTL detection of grain yield traits.  相似文献   
938.
Elevated CO2 (eCO2) increases rhizodeposits, which in turn alters the soil microbial community. However, it is not really known how the microbial community metabolizes plant‐derived carbon (C) in the rhizosphere under eCO2, especially in agricultural soils. This study used a 13CO2 labelling technique combined with DNA‐stable isotope probing (SIP) to fractionate the 13C‐DNA and 12C‐DNA from the rhizosphere of soya bean plants (Glycine max (L.) Merr. cv. Suinong 14) grown for 54 days under ambient CO2 (aCO2) (390 ppm) or eCO2 (550 ppm). The DNA fractions were then subjected to Illumina Miseq sequencing. The results showed that eCO2 decreased the richness and diversity of the 13C‐assimilating bacterial community compared to aCO2 (p < 0.05). Elevated CO2 decreased the abundances of genera, including Pseudarthrobacter, Gaiellales_uncultured, Microlunatus, Gemmatimonas, Gemmatimonadaceae_uncultured, Ramlibacter, Massilia, Luteimonas, Acidobacteriaceae_uncultured, Bryobacter and Candidatus_Solibacter. These genera were probably fast‐growing bacteria and sensitive to labile C. In contrast, eCO2 stimulated the growth of genera Novosphingobium, Acidimicrobiales_uncultured, Bacillus, Flavisolibacter and Schlesneria, which were able to assimilate complex C compounds. Moreover, the increased population of Novosphingobium under eCO2 might have accelerated electron flow from the oxidation of organic C. Correspondingly, eCO2 did not affect the concentration of the dissolved organic C but increased the plant‐derived 13C in the rhizosphere. These results indicated that an eCO2‐induced increase in non‐labile C in rhizodeposits contributed to the increase in population size of a number of the plant‐C‐metabolizing genera that might become the mechanism for the turnover of fresh C in the rhizosphere, modifying the soil C cycle under eCO2 environments.  相似文献   
939.
As a case study on landscape pattern analysis of soil erosion change, Xingguo County in Jiangxi Province, China, was once one of the most severely eroded regions in Subtropical China. However, its soil erosion has been completely controlled in recent years. This county was historically full of forest as well as waterways that were well protected and soil erosion was seldom seen even by the mid-19th century. However, large areas of forest were destroyed after that period due to over-logging, which resulted in excessive erosion, bare hills, and mountains devoid of vegetation. Fortunately, soil erosion in Xingguo has been controlled gradually since 1982 after the county was appointed as 1 of the 8 Key National Level Erosion Control Regions. In this study, a raster (grid) soil erosion map was collected on the basis of soil erosion intensity maps from 1958, 1975, 1982 and 2000 with the aid of GIS software (ARC/INFO). Over 10 landscape indices were calculated using FRAGSTATS software for landscape pattern analysis. A set of free spatial statistics that address a fundamental problem in GIS, and soil erosion distribution patterns and their changes in the county were quantitatively analyzed at the landscape and class levels, respectively. Moreover, transformations of soil erosion types from 1958 to 1975, 1975 to 1982, and 1982 to 2000 were also calculated using the CROSSTAB module in IDRISI software. Results showed that at the landscape level, heterogeneity of soil erosion decreased. This was supported by decreasing tendencies of patch indices SHDI (Shannon’s diversity index), SHEI (Shannons evenness index), and IJI (Interspersion and juxtaposition index). This indicates that most of the severely eroded soil types were transformed into non-apparently eroded or slightly eroded types. Meanwhile, at the class level, a consistent pattern was found where the surface areas of non-apparently eroded or slightly eroded lands increased, and moderately, severely, very severely and extremely eroded lands deceased. In general, soil erosion in Xingguo County experienced three pronounced phases during the study periods: the exacerbation phase (1958–1975), the alleviation phase (1975–1982), and the overall alleviation phase (1982–2000). By the year 2000, 74.6% of total territory of this county was covered by land with no significant soil loss, indicating that severe soil erosion had been substantially controlled.  相似文献   
940.

Purpose  

The levels of atmospheric carbon dioxide concentration ([CO2]) are rapidly increasing. Understanding carbon (C) dynamics in soil is important for assessing the soil C sequestration potential under elevated [CO2]. Nitrogen (N) is often regarded as a limiting factor in the soil C sequestration under future CO2 enrichment environment. However, few studies have been carried out to examine what would happen in the subtropical or tropical areas where the ambient N deposition is high. In this study, we used open-top chambers to study the effect of elevated atmospheric [CO2] alone and together with N addition on the soil C dynamics in the first 4 years of the treatments applied in southern China.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号