首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   561篇
  免费   32篇
  国内免费   1篇
林业   98篇
农学   42篇
基础科学   1篇
  98篇
综合类   25篇
农作物   63篇
水产渔业   137篇
畜牧兽医   82篇
园艺   3篇
植物保护   45篇
  2023年   8篇
  2022年   30篇
  2021年   28篇
  2020年   35篇
  2019年   33篇
  2018年   31篇
  2017年   24篇
  2016年   36篇
  2015年   31篇
  2014年   30篇
  2013年   57篇
  2012年   40篇
  2011年   40篇
  2010年   25篇
  2009年   22篇
  2008年   30篇
  2007年   8篇
  2006年   19篇
  2005年   20篇
  2004年   11篇
  2003年   9篇
  2002年   6篇
  2001年   5篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1996年   1篇
  1993年   1篇
  1988年   1篇
  1985年   2篇
  1982年   1篇
  1975年   1篇
  1960年   2篇
排序方式: 共有594条查询结果,搜索用时 15 毫秒
491.
The brown planthopper (BPH), Nilaparvata lugens (Stål), appeared as a devastating pest of rice in Asia. Experiments were conducted to study the effects of three nutrients, nitrogen (N), phosphorus (P) and potassium (K), on BPH and its host rice plants. Biochemical constituents of BPH and rice plants with varying nutrient levels at different growth stages, and changes in relative water content (RWC) of rice plants were determined in the laboratory. Feeding of BPH and the tolerance of rice plants to BPH with different nutrient levels were determined in the nethouse. Concentrations of N and P were found much higher in the BPH body than in its host rice plants, and this elemental mismatch is an inherent constraint on meeting nutritional requirements of BPH. Nitrogen was found as a more limiting element for BPH than other nutrients in rice plants. Application of N fertilizers to the rice plants increased the N concentrations both in rice plants and BPH while application of P and K fertilizers increased their concentrations in plant tissues only but not in BPH. Nitrogen application also increased the level of soluble proteins and decreased silicon content in rice plants, which resulted in increased feeding of BPH with sharp reduction of RWC in rice plants ultimately caused susceptible to the pest. P fertilization increased the concentration of P in rice plant tissues but not changed N, K, Si, free sugar and soluble protein contents, which indicated little importance of P to the feeding of BPH and tolerance of plant against BPH. K fertilization increased K content but reduced N, Si, free sugar and soluble protein contents in the plant tissues which resulted in the minimum reduction of RWC in rice plants after BPH feeding, thereby contributed to higher tolerance of rice plants to brown planthopper.  相似文献   
492.
Soil slaking is an environment-friendly technique that is gaining importance in restoring saline soils. The objective of this article is to evaluate the effect of initial water content (IWC) on saturated hydraulic conductivity (K s) in desalinization with slaking and drying. Accordingly, a slaking test was carried out during February, 2009 for evaluating the effects of slaking and drying on K s, sodium adsorption ratio (SAR) and exchangeable sodium percentage (ESP) under various IWC. We prepared natural and air-dried soils of paddy field in Kojima Bay Polder, Japan to give different pre-drying, air-dried, and not dried (natural). The air-dried soils were resaturated. Each soil was well mixed, then dried to different initial moisture contents (60, 50, 40, 30, 20, and 10% by weight). The specimens were immersed into water in the pot for 24 h. The K s was measured, and cations in slaked and unslaked soils were analyzed. The K s was high under the water content below 30% in both the natural and the air-dried soils. But the effects were more pronounced in the natural soil. The air-dried soil showed far smaller K s than the natural soil. In outer solution, the highest SAR was noted at 30% in the natural and 30 and 20% in the air-dried soils. Significant decrease in ESP of the soils (slaked + unslaked) was also observed at the same water content. Lower water content was more effective in decreasing the soil ESP after desalinization from saline soil. The natural soil showed lower ESP and higher porosity, which was considered as a reason for higher K s of natural soil than that of air-dried soils. The results indicated that lower water content (10–30%) had no hazardous effect on K s by slaking and drying of soil.  相似文献   
493.
Cryptosporidiosis is a common gastro-intestinal illness in animals and man worldwide. The disease is devastating in immune-suppressed individuals but self-limiting in competent hosts. The infectious stages of the organism (oocysts) are shed in the faeces of affected individuals, survive in adverse environmental conditions and spread by direct contact or through contaminants (food, water). Due to the robustness of the oocysts, their tenacity, tiny size, and resistance to common disinfectants, the parasite is difficult to eradicate from contaminated environments. To obtain sufficient control both treatment of infected hosts and inactivation of oocysts are necessary. Several drugs are commonly used to treat cryptosporidiosis in man and very few in animals but none of them are completely effective in terms of both clinical and parasitological response. Only a few chemical agents are able to inactivate oocysts in the environment including water treatment plants but their application has certain limitations. Therefore, control of cryptosporidiosis remains a global challenge in both veterinary and human medicine. Extensive research has been performed on suitable drugs and disinfectants. Thousands of agents have been tested both in vivo and in vitro. Some are excitingly active in vitro but exhibit poor or no response in clinical trials. Currently, no single or combined drug therapy has proven to be completely effective against this disease. This article will focus on therapy and prevention of cryptosporidiosis in animals including perspectives for new drugs.  相似文献   
494.
Natural fibers are largely divided into two categories depending on their origin: plant based and animal based. Plant based natural jute fiber reinforced polypropylene (PP) matrix composites (20 wt% fiber) were fabricated by compression molding. Bending strength (BS), bending modulus (BM), tensile strength (TS), Young’s modulus (YM), and impact strength (IS) of the composites were found 44.2 MPa, 2200 MPa, 41.3 MPa, 750 MPa and 12 kJ/m2, respectively. Animal based natural B. mori silk fiber reinforced polypropylene (PP) matrix composites (20 wt% fiber) were fabricated in the same way and the mechanical properties were compared over the silk based composites. TS, YM, BS, BM, IS of silk fiber reinforced polypropylene composites were found 55.6 MPa, 760 MPa, 57.1 MPa, 3320 MPa and 17 kJ/m2 respectively. Degradation of composites in soil was measured upto twelve weeks. It was found that plant based jute fiber/PP composite losses its strength more than animal based silk fiber/PP composite for the same period of time. The comparative study makes it clear that mechanical properties of silk/PP composites are greater than those values of jute/PP composites. But jute/PP composites are more degradable than silk/PP composites i.e., silk/PP composites retain their strength for a longer period than jute/PP composites.  相似文献   
495.
Spring wheat is the second option of cereal crop to feed the growing population in Bangladesh. This crop can yield more than 5.0 ton ha-1 with optimum management on 6.1 million ha of land - 2.6 million ha with irrigation and 3.5 million ha without irrigation. However, the present average wheat yield is near 1.5 ton ha-1, and only 10% of the potential area are under wheat cultivation for various reasons.  相似文献   
496.
Ammonia emission is one of the most important pathways of nitrogen loss from agricultural cultivated field. In this paper, we report the measurement of ammonia emission from paddy rice field obtained by surface application of urea fertilizer with water management. The main objective of the present study were to assess the amount of NH3 emission and the loss of nitrogen from paddy field as affected by various N doses, i.e., 0 (control), 90 (N1), 180 (N2), 270 (N3) and 360 (N4) kg ha-1, following field surface application of urea fertilizer with water management. Ammonia emissions were measured by continuous airflow enclosure method from plots fertilized with the application of surface urea. Increase in urea-N dosage increased NH3 emission thatwas measured from paddy rice field. Ammonia emission started immediately and was almost complete within 12 days after top dressing of urea application to the soils. Ammonia emissions were nearly constant in all treatments from 12 days after fertilizer application. Highest ammonia emission rate was 28 g/day and total amount of ammonia emission was 56.21 kg ha-1 for 360 kg N ha-1 dose. No remarkable observation was found about temperature for ammonia emission. Due to proper water management practices less emission was observed throughout the experiment period. The results also show that N loss through NH3 emission accounted for 11 to 16% during the ricegrowing season. These magnitudes of loss of N appear to be most important for environmental point of view.  相似文献   
497.
Sensing and Uptake of Nitrogen in Rice Plant: A Molecular View   总被引:1,自引:0,他引:1  
As a main feature of plant autotrophy, assimilation of inorganic nitrogen(N) is not only of fundamental interest to the crop, but also a crucial factor in crop productivity. N is the main plant mineral nutrient needed for chlorophyll production and other plant cell components(proteins, nucleic acids and amino acids). I highlighted the novel aspects of N responsive sensors, transporters and signaling molecules recently identified in the monocot rice plant, and discussed their potential roles in N sensing and transporting. Furthermore, over the last couple of years, N sensing has been shown to be affected by different external factors, which act as local signals to trigger systemic signaling coordinated by long-distance transport or mobile signals in plant body. Understanding of this complex regulatory network provides a foundation mechanism for the development of novel strategies to increase the acquisition and transportation efficiency of nitrogen under varying N conditions for rice production.  相似文献   
498.
Abnormal early ripening (AER), a major constraint on wheat production in Western Japan, manifests as sudden leaf senescence shortly after anthesis and results in poor grain filling; this leads to smaller grains and reduced grain yield. It is suggested that overwetting of the soil may be related to AER. We conducted field experiments over 2 seasons (2008-2009 and 2009-2010) in Yamaguchi, Western Japan, with waterlogging treatment using 2 Japanese wheat cultivars, Daichinominori (Western Japanese cultivar) and Haruyutaka (Hokkaido cultivar), which differ in terms of grain growth in the environment of Western Japan. We imposed pre-anthesis waterlogging for 2 weeks in 2008-2009 and post-anthesis waterlogging throughout the grain-filling period in 2009-2010. Pre-anthesis waterlogging had no significant effect on grain yield or grain filling irrespective of cultivar. Post-anthesis waterlogging severely reduced the grain yield by 44% and 36% in Haruyutaka and Daichinominori, respectively. The yield loss was attributable to the smaller grain weight that was a result of slower grain growth rate later in the shortened grain-filling period. Post-anthesis waterlogging induced sudden leaf senescence 1 and 2 weeks after anthesis in Haruyutaka and Daichinominori, respectively, and drastically reduced the photosynthesis and ultimately dry mass accumulation. It also depressed the remobilization of water-soluble carbohydrates (WSCs) from culms to grains leaving more residual WSCs in the culms at harvest (149 and 65 mg g−1 DW in waterlogging and controls, respectively). The results indicate that the reduced grain growth due to waterlogging was attributable to decreased current assimilation and poor remobilization of culm WSCs to grain similar to that in AER plants. These results suggest that injured root function after anthesis might induce early leaf senescence and poor grain filling similar to AER wheat.  相似文献   
499.
Arsenic contamination of groundwater and surface water is widespread throughout the world. Considering its carcinogenicity and toxicity to human and animal health, remediation of arsenic-contaminated water has become a high priority. There are several physicochemical-based conventional technologies available for removing arsenic from water. However, these technologies possess a number of limitations such as high cost and generation of toxic by-products, etc. Therefore, research on new sustainable and cost-effective arsenic removal technologies for water has recently become an area of intense research activity. Bioremediation technology offers great potential for possible future application in decontamination of pollutants from the natural environment. It is not only environmentally friendly but cost-effective as well. This review focuses on the state-of-art knowledge of currently available arsenic remediation methods, their prospects, and recent advances with particular emphasis on bioremediation strategies.  相似文献   
500.
Winter cover crops are recommended to improve soil quality and carbon sequestration, although their use as green manure can significantly increase methane (CH4) emission from paddy soils. Soil management practices can be used to reduce CH4 emission from paddy soils, but intermittent drainage is regarded as a key practice to reduce CH4 emission and global warming potential (GWP). However, significantly greater emissions of carbon dioxide (CO2) and nitrous oxide (N2O) are expected when large amounts of cover crop biomass are incorporated into soils. In this study, we investigated the effects of midseason drainage on CH4 emission and GWP following incorporation of 0, 3, 6 and 12 Mg/ha of cover crop biomass. Methane, CO2 and N2O emission rates significantly (P < 0.05) increased with higher rates of cover crop biomass incorporation under both irrigation conditions. However, intermittent drainage effectively reduced seasonal CH4 fluxes by ca. 42–46% and GWP by 17–31% compared to continuous flooding. Moreover, there were no significant differences in rice yield between the two water management practices with similar biomass incorporation rates. In conclusion, intermittent drainage and incorporation of 3 Mg/ha of green biomass could be a good management option to reduce GWP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号