首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   258篇
  免费   19篇
林业   17篇
基础科学   1篇
  36篇
综合类   30篇
农作物   1篇
水产渔业   46篇
畜牧兽医   123篇
园艺   9篇
植物保护   14篇
  2023年   2篇
  2022年   2篇
  2021年   12篇
  2020年   7篇
  2019年   23篇
  2018年   20篇
  2017年   5篇
  2016年   8篇
  2015年   7篇
  2014年   8篇
  2013年   23篇
  2012年   21篇
  2011年   19篇
  2010年   9篇
  2009年   11篇
  2008年   19篇
  2007年   10篇
  2006年   14篇
  2005年   15篇
  2004年   12篇
  2003年   13篇
  2002年   7篇
  2001年   2篇
  1990年   1篇
  1988年   2篇
  1987年   2篇
  1984年   1篇
  1977年   1篇
  1974年   1篇
排序方式: 共有277条查询结果,搜索用时 15 毫秒
181.
Formation of catalytic metal-molecule contacts   总被引:1,自引:0,他引:1  
We describe a new strategy for the in situ growth of molecular wires predicated on the synthesis of a trifunctional "primed" contact formed from metal-carbon multiple bonds. The ruthenium-carbon pi bond provides structural stability to the molecular linkages under ambient conditions, and density functional calculations indicate the formation of an efficient conduit for charge carriers to pass between the metal and the molecule. Moreover, the metal-carbon pi bond provides a chemically reactive site from which a conjugated molecular wire can be grown in situ through an olefin metathesis reaction.  相似文献   
182.
Another perspective on altitudinal limits of alpine timberlines   总被引:2,自引:0,他引:2  
Recent hypotheses of timberline causation include the possibility that limitations to growth processes may be more limiting than restrictions on photosynthetic carbon gain, and that cold soil is a primary limiting factor at high altitude. However, almost all of the supporting data for timberline causation have come from studies on older trees, with little focus on the mechanisms of seedling establishment and the growth of saplings away from the forest edge into the treeline ecotone. We describe a conceptual model of timberline migration that invokes a strong dependence on ecological facilitation, beginning with seed germination and continuing through seedling establishment and sapling growth to the stage where trees with forest-like stature form new subalpine forest at a higher altitude. In addition to protection from severe mechanical damage, facilitation of photosynthetic carbon gain and carbon processing is enhanced by plasticity in plant form and microsite preference, enabling seedling survival and sapling growth inside and through the often severe boundary layer just above the ground cover. Several forms of facilitation (inanimate, interspecific, intraspecific and structural) result in substantial increases in photosynthetic carbon gain throughout the summer growth period, leading to enhanced root growth, subsequent amelioration of drought stress, and increased seedling survival. Avoidance of low temperatures and low-temperature photoinhibition of photosynthesis may be major benefits of the facilitation, enhancing photosynthetic carbon gain and respiratory-driven growth processes. We propose that the growth of vertical stems (flagged tree forms) from krummholz mats is analogous functionally to the facilitated growth of a seedling/sapling in and away from ground cover. Increasing abundance and growth of newly established trees in the treeline ecotone generates a structural and microsite facilitation characteristic of the subalpine forest below. This is followed by the formation of new subalpine forest with forest-like trees, and a new timberline at higher altitude.  相似文献   
183.
184.
185.
186.
Rouze  Gregory  Neely  Haly  Morgan  Cristine  Kustas  William  Wiethorn  Matt 《Precision Agriculture》2021,22(6):1861-1889

Unoccupied aerial system (UAS) imagery may serve as an additional tool towards management zone delineation. This is because UAS data collection is relatively flexible. However, it is unclear how useful UASs can be towards generating management zones, relative to preexisting tools (e.g. apparent soil electrical conductivity or ECa). The purpose of this study, therefore, was to evaluate UAS imagery, relative to ECa, in terms of their ability to: 1) predict cotton traits (i.e. height, seed cotton yield), and 2) define cotton management zones based on these traits. Single-season UAS images from multispectral/thermal sensors were collected and processed into Normalized Difference Vegetation Index (NDVI) and radiometric surface temperature (Tr), respectively. Management zones were also delineated using digital camera (RGB) imagery collected at periods before planting and near harvest. RGB management zones were delineated by a novel open boll mapping approach. In-season NDVI and Tr layers were significant (P?<?0.01) predictors of canopy height. Additionally, NDVI and Tr maps produced statistically different management zones during flowering and boll filling growth stages in terms of yield (P?=?0.001 or less). Open boll layers were all more accurate predictors of cotton seed yield than ECa data—these two layers also produced statistically distinct management zones. ANOVA tests revealed that, given ECa alone, adding UAS information via the RGB open boll map resulted in a significantly different yield prediction model (P?<?0.001). These results suggest that UAS imagery can offer valuable information for cotton management zone delineation that other techniques cannot.

  相似文献   
187.
Estimating collateral mortality from towed fishing gear   总被引:6,自引:0,他引:6  
More than 50% of the world's total marine catch (approximately 81 million tonnes) is harvested using towed fishing gears (i.e. Danish seines, dredges and otter and beam trawls). As for all methods, the total fishing mortality of these gears comprises the reported (landed) and unreported catch and other unaccounted, collateral deaths due to (i) avoiding, (ii) escaping, (iii) dropping out of the gear during fishing, (iv) discarding from the vessel, (v) ghost fishing of lost gear, (vi) habitat destruction or subsequent (vii) predation and (viii) infection from any of the above. The inherent poor selectivity of many towed gears, combined with their broad spatial deployment, means that there is considerable potential for cumulative effects of (i)–(viii) listed above on total fishing mortality, and subsequent wide‐scale negative impacts on stocks of important species. In this paper, we develop a strategy for minimizing this unwanted exploitation by reviewing all the primary literature studies that have estimated collateral, unaccounted fishing mortalities and identifying the key causal factors. We located more than 80 relevant published studies (between 1890 and early 2006) that quantified the mortalities of more than 120 species of escaping (26 papers) or discarded (62 papers) bivalves, cephalopods, crustaceans, echinoderms, elasmobranches, reptiles, teleosts and miscellaneous organisms. Seven of these studies also included the estimates of mortalities caused by dropping out of gears, predation and infection [(iii), (vii) and (viii) listed above]. Owing to several key biological (physiology, size and catch volume and composition), environmental (temperature, hypoxia, sea state and availability of light) and technical (gear design, tow duration and speed) factors, catch‐and‐escape or catch‐and‐discarding mechanisms were identified to evoke cumulative negative effects on the health of most organisms. We propose that because the mortalities of discards typically are much greater than escapees, the primary focus of efforts to mitigate unaccounted fishing mortalities should concentrate on the rapid, passive, size and species selection of non‐target organisms from the anterior sections of towed gears during fishing. Once maximum selection has been achieved and demonstrated to cause few mortalities, efforts should be made to modify other operational and/or post‐capture handling procedures that address the key causal factors listed above.  相似文献   
188.
189.
Understanding the acid-base chemistry of soil and the soil processes related to the release or retention of sulfate and nitrate is important in order to predict watershed recovery from long-term acid deposition. Soils were sampled from the Noland Divide Watershed (NDW), a small, high-elevation watershed in the Great Smoky Mountains National Park receiving high rates of acid deposition over several decades. Soil samples were measured for chemical properties related to acidification and used to conduct sulfate adsorption and nitrogen (N) incubation experiments. Shallow soil was higher in acidic and basic ions than deeper soils, and the mean effective cation exchange capacity was 8.07, 5.06, and 3.57 cmolc kg−1 in the A, Bw, and Cb horizons, respectively. In all three soil horizons, the base saturation was equal to or below 7% and the ratio of Ca/Al was below 0.01, indicating that the NDW is very sensitive to acid deposition. Based on results from sulfate adsorption isotherms, the NDW has not reached its maximum sulfate adsorption saturation and is likely able to retain further additions of sulfate. Desorption of sulfate from NDW soils is expected if sulfate concentrations in soil solution drop below 50 μeq L−1 but is highly dependent on soil pH and organic carbon content. Total soil organic N was 500 times greater than inorganic N in the A soil horizon, and net N mineralization and nitrification remained constant during a 28-day incubation indicating a large reservoir of N substrate for soil microbes. Nitrogen experiment results suggest that nitrate export from the watershed is largely controlled by biological processes rather than by nitrate deposition flux. Soil data collected in this study contributes to our understanding of biogeochemical processes affecting the response of acid-impacted ecosystems such as the NDW to future changes in atmospheric deposition.  相似文献   
190.
Chen  Kai  Sagada  Gladstone  Xu  Bingying  Liu  Yuechong  Zheng  Lu  Tegomo  Arnaud Fabrice  Yang  Yifei  Sun  Yuxiao  Wang  Jia  Longshaw  Matt  Shao  Qingjun 《Aquaculture International》2022,30(4):1693-1710
Aquaculture International - The increasing cost of fishmeal (FM) with limited supply and the continuous development of aquaculture necessitate more economical FM substitutes. This study aimed to...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号