首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   13篇
林业   2篇
农学   3篇
基础科学   1篇
  16篇
综合类   10篇
农作物   3篇
水产渔业   6篇
畜牧兽医   27篇
植物保护   12篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   4篇
  2019年   5篇
  2018年   8篇
  2017年   3篇
  2016年   3篇
  2015年   3篇
  2014年   1篇
  2013年   3篇
  2012年   6篇
  2011年   3篇
  2010年   3篇
  2009年   5篇
  2008年   10篇
  2007年   1篇
  2006年   3篇
  2005年   4篇
  2004年   2篇
  2003年   2篇
  2002年   3篇
  1996年   2篇
  1985年   1篇
  1962年   1篇
排序方式: 共有80条查询结果,搜索用时 15 毫秒
71.
Specific stability of organic matter in a stormwater infiltration basin   总被引:1,自引:0,他引:1  

Purpose

In stormwater infiltration basins, sediments accumulate at the soil surface and cause a gradual filling up of soil pores. These sediments are composed of a mixture of natural and anthropogenic (as oil products) organic matters (OMs). The degradation kinetics of these sediment OMs and their biological stability has been neglected. This study aimed to characterize sediments OMs to assess their evolution and their capacity to degrade.

Materials and methods

To characterize OMs from the sediment layer, we measured at several places in the infiltration basin, total OM and carbon (C) contents, C distribution and biochemical fractions of the OM in the different size fractions, the sediment’s C mineralization potential, soil microbial biomass, and organic pollutants (polycyclic aromatic hydrocarbons (PAHs)) in the sediment layer.

Results and discussion

OM contents were high and varied from 66 to 193 g?kg?1 from the inlet to the outlet of basin. Depending on rainfall intensity and volume, organic particles were deposited at varying distances in the basin by decantation; this was confirmed by analysis of sediment C distribution in the different size fractions. Despite high amounts of OM, organic C had a low biodegradability. Mineralization potentials were low compared to natural soil (i.e., from 0.3 to 1.1 g CO2–C kg?1 total organic carbon). Biochemical fractionation of the organic fractions indicated that they were mainly composed of a soluble fraction, which contributed to reducing OM biodegradability. The activity of the sediment microbial biomass was low. PAH contents seemed to be partly responsible for the high biostability of OMs.

Conclusions

There was limited capacity for biodegradation of sediment OMs probably due to inhibitory effects of soluble PAHs and consequently low microbial activity.  相似文献   
72.
Plant-plant and plant-soil interactions play a key role in determining plant community structure and ecosystem function. However, the effects of global change on the interplay between co-occurring plants and soil microbes in successional communities are poorly understood. In this study, we investigated competition for nitrogen (N) between soil microorganisms, grass plants and establishing tree seedlings under factorial carbon dioxide (CO2) and N treatments. Fraxinus excelsior seedlings were germinated in the presence or absence of grass competition (Dactylis glomerata) at low (380 μmol mol−1) or high (645 μmol mol−1) CO2 and at two levels of N nutrition in a mesocosm experiment. Pulse 15N labelling was used to examine N partitioning among plant and soil compartments. Dactylis exerted a strong negative effect on Fraxinus biomass, N capture and 15N recovery irrespective of N and CO2 treatment. In contrast, the presence of Dactylis had a positive effect on the microbial N pool. Plant and soil responses to N treatment were of a greater magnitude compared with responses to elevated CO2, but the pattern of Fraxinus- and microbial-N pool response to N and CO2 varied depending on grass competition treatment. Within the Dactylis competition treatment, decreases in Fraxinus biomass in response to N were not mirrored by decreases in tree seedling N content, suggesting a shift from below- to above-ground competition. In the Dactylis-sown pots, 15N recovery could be ranked Dactylis > microbial pool > Fraxinus in all N and CO2 treatment combinations. Inequalities between Fraxinus and soil microorganisms in terms of 15N recovery were exacerbated by N addition. Contrary to expectations, elevated CO2 did not increase plant-microbe competition. Nevertheless, microbial 15N recovery showed a small positive increase in the high CO2 treatment. Overall, elevated CO2 and N supply did not interact on plant/soil N partitioning. Our data suggest that the competitive balance between establishing tree seedlings and grass plants in an undisturbed sward is relatively insensitive to CO2 or N-induced modifications in N competition between plant and soil compartments.  相似文献   
73.
BACKGROUND: Crops resistant to glyphosate may mitigate the increasing contamination of the environment by herbicides, since their weeding requires smaller amounts of herbicides and fewer active ingredients. However, there are few published data comparing the fate of glyphosate with that of substitute herbicides under similar soil and climatic conditions. The objectives of the work reported here were (i) to evaluate and compare the fate in soil in field conditions of glyphosate, as used on glyphosate-resistant oilseed rape, with that of two herbicides frequently used for weed control on the same crop, albeit non-resistant: trifluralin and metazachlor, and (ii) to compare field results with predictions of the pesticide root zone model (PRZM), parameterized with laboratory data. Dissipation and vertical distribution in the soil profile of glyphosate, trifluralin and metazachlor were monitored in an experimental site located in Eastern France for 1 year. RESULTS: Herbicide persistence in the field increased as follows: metazachlor < glyphosate < trifluralin, contrary to laboratory results showing glyphosate to be least persistent. The main metabolite of glyphosate-aminomethylphosphonic acid (AMPA)-was more persistent than glyphosate. AMPA and trifluralin had the largest vertical mobility, followed by metazachlor and glyphosate. PRZM underestimated the dissipation rate of glyphosate in the field and the formation of AMPA, but its predictions for trifluralin and metazachlor were correct. The simulation of herbicides and AMPA distribution in the soil profile was satisfactory, but the mobility of trifluralin and metazachlor was slightly underestimated, probably because PRZM ignores preferential flow. In general, data from the laboratory allowed an acceptable parameterization of the model, as indicated by goodness-of-fit indices. CONCLUSION: Because of the detection of AMPA in the deep soil layer, the replacement of both trifluralin and metazachlor with glyphosate might not contribute to decreasing environmental contamination by herbicides. PRZM may be used to evaluate and to compare other weed control strategies for herbicide-resistant as well as non-resistant crops.  相似文献   
74.
The introduction of crops resistant to the broad spectrum herbicide glyphosate, N-(phosphonomethyl)glycine, may constitute an answer to increased contamination of the environment by herbicides, since it should reduce the total amount of herbicide needed and the number of active ingredients. However, there are few published data comparing the fate of glyphosate in the environment, particularly in soil, with that of substitute herbicides. The objective of this study is to compare the fate of glyphosate in three soils with that of four herbicides frequently used on crops that might be glyphosate resistant: trifluralin, alpha,alpha,alpha-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine, and metazachlor, 2-chloro-N-(pyrazol-1-ylmethyl)acet-2',6'-xylidide for oilseed rape, metamitron, 4-amino-4,5-dihydro-3-methyl-6-phenyl-1,2,4-triazin-5-one for sugarbeet and sulcotrione, 2-(2-chloro-4-mesylbenzoyl)cyclohexane-1,3-dione for maize. The distribution of herbicides between the volatilized, mineralized, extractable and non-extractable fractions was studied, along with the formation of their metabolites in laboratory experiments using 14C-labelled herbicides, over a period of 140 days. The main dissipation pathways were mineralization for glyphosate and sulcotrione, volatilization for trifluralin and non-extractable residues formation for metazachlor and metamitron. The five herbicides had low persistence. Glyphosate had the shortest half-life, which varied with soil type, whereas trifluralin had the longest. The half-lives of metazachlor and sulcotrione were comparable, whereas that of metamitron was highly variable. Glyphosate, metazachlor and sulcotrione were degraded into persistent metabolites. Low amounts of trifluralin and metamitron metabolites were observed. At 140 days after herbicide applications, the amounts of glyphosate and its metabolite residues in soils were the lowest in two soils, but not in the third soil, a loamy sand with low pH. The environmental advantage in using glyphosate due to its rapid degradation is counterbalanced by accumulation of aminomethylphosphonic acid specifically in the context of extensive use of glyphosate.  相似文献   
75.
Experimental pneumonic pasteurellosis was used in 30 Holstein calves to compare the effects on the immune response of different treatments: antibiotics alone or antibiotics in combination with either steroidal (SAID) or non-steroidal anti-inflammatory drugs (NSAID). Clinical parameters and the effect of treatments on the mitogen-induced proliferation of peripheral mononuclear blood cells (PMBCs) and on their distribution were evaluated.Calves in all three treated groups showed rapid improvement, but clinical signs were less marked in both groups receiving anti-inflammatory drugs. Limited difference in the effect on the immune system of treatments was observed. No inhibition of lymphocytes proliferation was detected in these experimental conditions in the dexamethasone (DM)-treated group. There was no variation among groups for the CD4+, CD5+, CD8+ and CD21+ populations. The only noteworthy change was a transient increase in the percentage of the monocyte population (CD14+) in the DM-treated group compared to the group treated with NSAID.  相似文献   
76.
Pestiviruses have been isolated from live sheep pox Tunisian vaccines. Vaccination with these vaccines caused outbreaks of Border Disease in Tunisia. In order to study more precisely the pathogenicity of these isolates, three groups of eight four month old lambs from a pestivirus-free flock were infected by the intratracheal route with a French strain (AV) and two Tunisian isolates (SN3G and Lot21). Clinical, hematological, immunological and virological parameters were evaluated. The three groups developed mild fever and leucopaenia by day 3 to 6 post infection (pi). The differences in the weight curves were not significant. Viruses were isolated from the peripheral blood buffy coat cells by day 4 to 9 pi. Antibodies were present on day 16 pi following infection by the French strain and on day 21 pi with the Tunisian isolates. The results demonstrated that SN3G and Lot21 are almost similar to the French strain used as the reference strain. In field conditions, they could induce economical losses in naive flocks, alone or in association with other pathogens.  相似文献   
77.
78.
Vegetational changes during the restoration of cutover peatlands leave a legacy in terms of the organic matter quality of the newly formed peat. Current efforts to restore peatlands at a large scale therefore require low cost and high throughput techniques to monitor the evolution of organic matter. In this study, we assessed the merits of using Fourier transform infrared (FTIR) spectra to predict the organic matter composition in peat samples at various stages of peatland regeneration from five European countries. Using predictive partial least squares (PLS) analyses, we were able to reconstruct peat C:N ratio and carbohydrate signatures with reasonable accuracy, but not the micromorphological composition of vegetation remains. Despite utilising different size fractions, both carbohydrate (<200 μm fraction) and FTIR (bulk soil) analyses report on the composition of plant cell wall constituents in the peat and therefore essentially reveal the composition of the parent vegetational material. The accuracy of the FTIR-based PLS models for C:N ratios and carbohydrate signatures was adequate to allow for their use as initial screening tools in the evaluation of the present and future organic matter composition of peat during monitoring of restoration efforts.  相似文献   
79.
80.
EU agriculture is currently in transition from conventional crop protection to integrated pest management (IPM). Because biocontrol is a key component of IPM, many European countries recently have intensified their national efforts on biocontrol research and innovation (R&I), although such initiatives are often fragmented. The operational outputs of national efforts would benefit from closer collaboration among stakeholders via transnationally coordinated approaches, as most economically important pests are similar across Europe. This paper proposes a common European framework on biocontrol R&I. It identifies generic R&I bottlenecks and needs as well as priorities for three crop types (arable, vegetable and perennial crops). The existing gap between the market offers of biocontrol solutions and the demand of growers, the lengthy and expensive registration process for biocontrol solutions and their varying effectiveness due to variable climatic conditions and site‐specific factors across Europe are key obstacles hindering the development and adoption of biocontrol solutions in Europe. Considering arable, vegetable and perennial crops, a dozen common target pests are identified for each type of crop and ranked by order of importance at European level. Such a ranked list indicates numerous topics on which future joint transnational efforts would be justified. © 2016 Society of Chemical Industry  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号