首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3239篇
  免费   264篇
林业   206篇
农学   108篇
基础科学   26篇
  767篇
综合类   208篇
农作物   156篇
水产渔业   306篇
畜牧兽医   1412篇
园艺   87篇
植物保护   227篇
  2024年   14篇
  2023年   45篇
  2022年   44篇
  2021年   94篇
  2020年   105篇
  2019年   99篇
  2018年   132篇
  2017年   124篇
  2016年   159篇
  2015年   132篇
  2014年   135篇
  2013年   192篇
  2012年   286篇
  2011年   278篇
  2010年   130篇
  2009年   131篇
  2008年   217篇
  2007年   194篇
  2006年   176篇
  2005年   160篇
  2004年   138篇
  2003年   135篇
  2002年   112篇
  2001年   44篇
  2000年   56篇
  1999年   46篇
  1998年   14篇
  1997年   9篇
  1996年   6篇
  1995年   12篇
  1994年   7篇
  1993年   14篇
  1992年   5篇
  1991年   6篇
  1990年   6篇
  1989年   7篇
  1988年   7篇
  1987年   5篇
  1986年   3篇
  1985年   6篇
  1984年   2篇
  1983年   2篇
  1981年   2篇
  1980年   2篇
  1977年   1篇
  1973年   1篇
  1972年   1篇
  1966年   1篇
  1955年   3篇
  1947年   1篇
排序方式: 共有3503条查询结果,搜索用时 15 毫秒
51.
Summary The invasive potential of a species can be assessed by propagule pressure, which measures the chances for propagules of a species to find a suitable habitat for establishment and reproduction. Seeds, fruits, and vegetative structures that contribute to the propagule pressure are morphologically, physiologically and genetically different from one another, thus each kind should have a specific way of contributing to a successful invasion. In this paper we review plant traits that contribute to the propagule pressure. Seed production provides an estimate of the potential multiplication rate of the weed. However, it is gap-sensing mechanisms of seeds based on dormancy termination and germination requirements, which significantly contribute to the naturalization and invasion processes assuring a successful seedling establishment in environments of high competition. Dispersal of propagules reduces competition, mating with a sibling, and subsequent inbreeding depression, and increases colonization opportunities and range of expansion. Some of those benefits can be achieved in a population by existence of dormancy mechanisms and thus, the existence of a seed bank. Finally, vegetative propagation may ensure expansion of local populations when seedling establishment is low. Broadening the scope of traits that are considered in the breeding programs aimed at commercial production of plant propagules, to include those related to propagule pressure, is essential for adequate evaluation of invasive potential.  相似文献   
52.
53.
54.
Annual wormwood interference on soybean crop growth and yield may result from competition and allelopathy, which are modulated by crop management. Allelochemicals released by annual wormwood (e.g. artemisinin) may affect the crop directly or indirectly through the effect on the nitrogen fixing symbiont, Bradyrhizobium japonicum. The objectives were (i) to quantify the crop response (i.e. biomass production, nodulation and yield) to weed interference and (ii) to determinate the relative change of competition and allelopathy interferences, when a sublethal dose of herbicide is applied. Two split plot field experiments with three replications were used. The experiment involved a factorial combination of five weed–crop density (soybean/annual wormwood, plants m?2) levels: D1, pure soybean, 40/0 plants m?2; D2, 40/2 plants m?2; D3, 40/4 plants m?2 and D4, 40/8 plants m?2, and D5, pure annual wormwood, 0/8 plants m?2, two activated carbon (allelopathy) levels: C?, with activated carbon (reduced allelopathy) and C+, non activated carbon applied (with allelopathy) and two herbicide levels: H?, untreated and H+, treated with a sub-lethal dose of glyphosate. Activated carbon to adsorb allelochemicals (with and without activated carbon) and glyphosate application (with and no herbicide) were assigned to sub-plots. Increasing weed density did not affect crop biomass at flowering, but changed nodule number and soybean yield with a different pattern depending on carbon and herbicide treatment. Relative crop yield decreased with increasing relative weed biomass. This decrease was particularly drastic when allelopathy was reduced by activated carbon and without herbicide application. The maximum yield losses of 33% in 2006 and 17% in 2007 were observed with the highest weed density (8 plants m?2). In contrast, without carbon (high allelopathy level), soybean yield remained stable within the explored range of annual wormwood biomass, despite the fact that weed biomass at high densities (D4) was high enough to generate competition. The lack of response to increasing weed density could be related to the indirect effect of allelochemicals interacting with soil microorganisms (i.e. B. japonicum) that positively affected the nodulation (e.g. larger nodules in 2006 and increased nodules biomass due to higher number of roots in 2007 at high densities). With herbicide application, soybean yield of both carbon treatments remained stable when biomass of annual wormwood increased. This research provided strong evidence in support of the existence of positive effect of allelopathic and competitive interactions between annual wormwood and soybean crop under field conditions that may be overridden under herbicide application.  相似文献   
55.
We estimate a spatial econometric interaction model for bilateral aggregate FDI stock data between 25 European Union member countries in 2010. We find evidence for spatial spillovers of foreign direct investment for three different types of spatial dependence. Our results document FDI spillovers between neighboring countries of FDI origin countries, neighboring countries of FDI destination countries as well as between neighboring countries of both FDI origin and destination countries. Relying on recently developed methods, we provide the first model‐consistent interpretation of marginal effects of market size (measured by GDP) as well as GDP per capita on bilateral FDI activity. Our research highlights the importance of taking into account spatial lags when estimating bilateral FDI gravity models.  相似文献   
56.
The influence of a fire retardant (Firesorb, an acrylic–acrylamide copolymer) on the microbial community structure determined by phospholipid fatty acid (PLFA) analysis was examined under laboratory conditions using two different textured soils under pine forest. Firesorb was added to unheated and heated soil samples (350°C for 10 min followed by reinoculation, to mimic a forest fire) at three levels of application (none, usual and three times the usual levels), and measurements were made after 12 weeks of incubation. The relative importance of the three factors considered on the PLFA profiles was as follows: soil heating ≫ soil texture ≈ Firesorb treatment. In the unheated soils, Firesorb had a larger effect than soil texture, while the opposite was found in the heated soils. Soil heating reduced the total PLFAs, while Firesorb tended to increase them in both the unheated and heated soils. Soil heating decreased the PLFAs indicative of gram-positive (G+) bacteria and tended to increase the fatty acids associated with gram-negative (G) bacteria and, to a lesser extent, the PLFA 18:2ω6, considered to be predominantly of fungal origin. Firesorb treatment decreased the G/G+ bacteria ratio in the heated soils but tended to increase it in the unheated soils, the effect being dose dependent.  相似文献   
57.
Composites were prepared with 13, 23 30 and 40 % fiber and evaluated the mechanical performance in tensile, flexural and impact. The mechanical properties of these composites were also evaluated function of time at 110 °C thermal exposure. Caroa fibers were characterized by techniques such as thermal gravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was found that the best mechanical properties were achieved for composites containing 23 to 30 % fiber. The incorporation of 23 % fiber caroa increased both the modulus of elasticity in the tensile test as the flexural strength and impact, the composite with 30 % fiber caroa showed higher tensile strength. The results show that the tensile and flexural strength of the composite decreased with time of thermal exposure. The thermal aging at 110 °C caused a decrease in tensile properties of the composites.  相似文献   
58.
Based on their composition, marine algae, and namely red seaweeds, are good potential functional foods. Intestinal mucosal barrier function refers to the capacity of the intestine to provide adequate containment of luminal microorganisms and molecules. Here, we will first outline the component of seaweeds and will summarize the effects of these on the regulation of mucosal barrier function. Special attention will be paid to unique components of red seaweeds: proteins and derived peptides (e.g., phycobiliproteins, glycoproteins that contain “cellulose binding domains”, phycolectins and the related mycosporine-like amino acids) together with polysaccharides (e.g., floridean starch and sulfated galactans, such as carrageenans, agarans and “dl-hybrid”) and minerals. These compounds have been shown to exert prebiotic effects, to regulate intestinal epithelial cell, macrophage and lymphocyte proliferation and differentiation and to modulate the immune response. Molecular mechanisms of action of peptides and polysaccharides are starting to be elucidated, and evidence indicating the involvement of epidermal growth factor receptor (EGFR), insulin-like growth factor receptor (IGFR), Toll-like receptors (TLR) and signal transduction pathways mediated by protein kinase B (PKB or AKT), nuclear factor-κB (NF-κB) and mitogen activated protein kinases (MAPK) will also be summarized. The need for further research is clear, but in vivo experiments point to an overall antiinflammatory effect of these algae, indicating that they can reinforce membrane barrier function.  相似文献   
59.

Purpose

Sediment transport and riverbed sedimentation were investigated in an alpine stream below a small hydropower reservoir desilted by a controlled sediment flushing (CSF) operation. The term “controlled” refers to the operational tasks implemented to mitigate the downstream environmental impact of the operation. The experimental dataset acquired before, during, and after the CSF was also used to carry out and calibrate a one-dimensional sediment transport model of the monitored event.

Materials and methods

The investigated reservoir is located in the central Italian Alps, and its original storage was 160,000 m3, about 30% filled by a mixture of sand and silt/clay before the CSF. Downstream sediment concentration was controlled by releasing clear water from upstream reservoirs and regulating the work of earth-moving equipment in the emptied reservoir. A 3.6-km-long reach with average slope of 0.015 was monitored: concentration and grain size of suspended sediment were measured during the CSF and the riverbed alteration was evaluated by volumetric sampling and measurements of the deposits’ thickness. Sedimentation and River Hydraulics—One Dimensional (SRH-1D) was used to simulate sediment transport during the monitored CSF. Model parameters were calibrated by comparing the computed and the observed amount of sediment deposited along the study reach.

Results and discussion

Sediment flushing was carried out in October 2010 for 3 days. Ca. 16,000 m3 of sediment were evacuated, representing approximately 30% silt/clay and 70% sand. 2.4 Mm3 of clear water was released to reduce sediment concentration and increase transport capacity downstream. About 3000 m3 of sand was deposited in the study reach after the CSF, with maximum height up to 0.2 m. Although the riverbed before the CSF was simply set as mono-granular, after calibrating the parameters, good agreement was achieved between the depositional pattern computed by SRH-1D and the one observed, both in terms of deposit thickness and grain size of deposited sediment. The sensitivity analysis revealed a major role of the parameters controlling bed mixing processes in affecting the simulated deposition after the CSF.

Conclusions

Sediment below 0.1 mm in diameter was not detected in river deposits after the flushing: the effects on river biota associated with substrate clogging by very fine sediment were therefore minimized. After proper calibration, 1-D sediment transport modeling can effectively support the planning of CSF operations: to minimize the downstream environmental effects, concurrently achieving acceptable flushing efficiency, the analyzed scenarios as well as the model outputs need to be carefully evaluated from a multidisciplinary perspective.
  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号