全文获取类型
收费全文 | 516篇 |
免费 | 22篇 |
国内免费 | 1篇 |
专业分类
林业 | 58篇 |
农学 | 11篇 |
基础科学 | 3篇 |
171篇 | |
综合类 | 47篇 |
农作物 | 18篇 |
水产渔业 | 48篇 |
畜牧兽医 | 134篇 |
园艺 | 19篇 |
植物保护 | 30篇 |
出版年
2023年 | 5篇 |
2022年 | 5篇 |
2021年 | 3篇 |
2020年 | 13篇 |
2019年 | 12篇 |
2018年 | 10篇 |
2017年 | 14篇 |
2016年 | 12篇 |
2015年 | 12篇 |
2014年 | 18篇 |
2013年 | 35篇 |
2012年 | 33篇 |
2011年 | 34篇 |
2010年 | 25篇 |
2009年 | 15篇 |
2008年 | 38篇 |
2007年 | 33篇 |
2006年 | 22篇 |
2005年 | 33篇 |
2004年 | 26篇 |
2003年 | 30篇 |
2002年 | 15篇 |
2001年 | 14篇 |
2000年 | 4篇 |
1999年 | 3篇 |
1998年 | 5篇 |
1997年 | 2篇 |
1996年 | 5篇 |
1995年 | 2篇 |
1994年 | 3篇 |
1993年 | 5篇 |
1991年 | 6篇 |
1990年 | 4篇 |
1989年 | 4篇 |
1988年 | 3篇 |
1986年 | 1篇 |
1984年 | 3篇 |
1979年 | 1篇 |
1976年 | 3篇 |
1975年 | 5篇 |
1974年 | 1篇 |
1972年 | 1篇 |
1969年 | 4篇 |
1968年 | 2篇 |
1967年 | 1篇 |
1966年 | 3篇 |
1965年 | 4篇 |
1964年 | 2篇 |
1963年 | 1篇 |
1962年 | 1篇 |
排序方式: 共有539条查询结果,搜索用时 0 毫秒
51.
52.
Robert J. Diaz Lars Johan Hansson Rutger Rosenberg Paul C. Gapcynski Michael A. Unger 《Water, air, and soil pollution》1993,66(3-4):251-266
It is possible to rapidly detect the presence of high concentrations of sediment associated hydrocarbons using a sediment profile camera and simultaneously evaluate the general sedimentological and biological character of a contaminated area. In sediments that were heavily contaminated with hydrocarbons from spills and chronic long-term additions the presence of hydrocarbons was seen about 50% of the time in the sediment profile images as unique features, ‘H spots’. The presence of these features was related to the concentration of hydrocarbons in the sediment. In highly contaminated muddy sediments ‘H spots’ were found in images collected at stations that had from 270 to 610 ppt total hydrocarbons. Sedimentological and biological information obtained from the sediment profile images confirmed the impacted nature of Elizabeth River sediments. Sediment profile imaging provide a means of obtaining an overall evaluation of the quality of a habitat and impacts on that habitat from pollution related environmental disturbances. While qualitative, an advantage of sediment profile image data is that they can be evaluated in less than a day and used to quickly locate inclusions of hydrocarbons in the sediments for further quantitative chemical or biological sampling, or mapping of heavily contaminated areas. 相似文献
53.
Julie Therese Christensen Musibau Oyeleke Azeez Rodrigo Labouriau Sabine Ravnskov Hanne Lakkenborg Kristensen Lars Juhl Munkholm Gitte Holton Rubæk 《Soil Use and Management》2022,38(1):991-1003
Lime and phosphorus (P) applications are common agricultural management practices. Our aim was to quantify the effects of long-term application practices on root growth and abundance of arbuscular mycorrhizal fungi (AMF) under field conditions. We assessed the effects of lime and P fertilizer applications on barley yield, root growth and AMF abundance in 2016. Treatments were no, low, medium and high liming rate corresponding to application of 0, 4, 8 and 12 Mg lime ha−1 every 5–9 years since 1942 combined with no or yearly application of 15.6 kg P ha−1 since 1944. At harvest, grain yield, root intensity (core-break) and AMF abundance at different soil depths were estimated. Root development was monitored during early growth with minirhizotrons in treatments receiving low, medium and high liming rates and P fertilization. A quadratic model relating grain yield to liming rate estimated yields to peak at 6.4 Mg lime ha−1 with yields of 4.2 and 3.2 Mg grain ha−1 with and without P fertilization, respectively. Low and medium liming rates resulted in greater AMF abundance, especially in the no P treatments. During early growth in P-fertilized treatments, 77% and 65% more roots developed in the soil profile when treated with medium and high liming rate, respectively, compared to low liming rate. We conclude that long-term application of lime in soils receiving yearly P fertilization improved conditions for root growth in soil layers below 30 cm, but at the high liming rate, this did not translate into higher yield. 相似文献
54.
Walldén L 《Science (New York, N.Y.)》2006,314(5800):769-770
55.
The scattered tree layer that defines savannas is important for structuring the understory community and determining patterns of overstory recruitment. However, encroachment by woody plants has altered overstory tree densities and regeneration dynamics. We characterized seedling success of the savanna-forming species Quercus alba within Midwestern (USA) oak savannas that had been degraded by encroachment (control; n = 4) or experimentally restored by removal of encroaching woody vegetation (treatment; n = 4). In early 2004, 981 seedlings were transplanted along transects radiating from tree boles of overstory Q. alba trees to inter-canopy gaps and monitored for three growing seasons. Seedlings in restored sites had greater survival (>2×), height growth (by >50%), and basal diameter growth (by >20%). In general, seedling survival and growth parameters increased with distance from overstory trees and were greatest in inter-canopy gaps of restored sites. By the final growing season (2006), the seedling survival-by-distance from tree correlation was stronger in control (r2 = 0.25) than treatment sites (r2 = 0.18), due to relatively uniform (and greater) survival at all distances from trees in treatment sites. In 2006, growth parameters (seedling height, diameter, Δ height, Δ diameter, and # leaves) were significantly (and more strongly) positively correlated with distance from trees in treatment sites. However, seedling herbivory was also greater after treatment and increased with distance from overstory trees. To understand seedling/microenvironment relationships, we created logistic (survival) and linear regression models (Δ height, Δ basal diameter, # leaves in 2006). Control seedling models had consistently greater predictive power and included more variables, suggesting that savanna restoration may decouple seedlings from their microenvironments, potentially by decreasing competition for limiting resources. Encroachment of the savannas in this study is limiting regeneration of Q. alba, suggesting substantially altered regeneration dynamics from those under which these savannas originally formed. Initial responses from our test of restoration, however, were promising and mechanical encroachment removal may be a means to promote overstory regeneration of this species. Finally, the savannas in this study appear inherently unstable and a scattered canopy tree configuration is unlikely to persist without regular disturbance, even in the restoration sites. Repeated mechanical thinning treatments with selected retention of recruiting Q. alba individuals or reintroduction of understory fire or grazing animals may be potential mechanisms for promoting long-term persistence of savannas at these sites. 相似文献
56.
Teodora Todorcic Vekic Shahid Nadeem Lars Molstad Vegard Martinsen Elisabeth Gautefall Hiis Lars Bakken Tobias Rütting Leif Klemedtsson Peter Dörsch 《Soil Use and Management》2023,39(3):1082-1095
Liming of acidic agricultural soils has been proposed as a strategy to mitigate nitrous oxide (N2O) emissions, as increased soil pH reduces the N2O/N2 product ratio of denitrification. The capacity of different calcareous (calcite and dolomite) and siliceous minerals to increase soil pH and reduce N2O emissions was assessed in a 2-year grassland field experiment. An associated pot experiment was conducted using homogenized field soils for controlling spatial soil variability. Nitrous oxide emissions were highly episodic with emission peaks in response to freezing–thawing and application of NPK fertilizer. Liming with dolomite caused a pH increase from 5.1 to 6.2 and reduced N2O emissions by 30% and 60% after application of NPK fertilizer and freezing–thawing events, respectively. Over the course of the 2-year field trial, N2O emissions were significantly lower in dolomite-limed than non-limed soil (p < .05), although this effect was variable over time. Unexpectedly, no significant reduction of N2O emission was found in the calcite treatment, despite the largest pH increase in all tested minerals. We tentatively attribute this to increased N2O production by overall increase in nitrogen turnover rates (both nitrification and denitrification) following rapid pH increase in the first year after liming. Siliceous materials showed little pH effect and had no significant effect on N2O emissions probably because of their lower buffering capacity and lower cation content. In the pot experiment using soils taken from the field plots 3 years after liming and exposing them to natural freezing–thawing, both calcite (p < .01) and dolomite (p < .05) significantly reduced cumulative N2O emission by 50% and 30%, respectively, relative to the non-limed control. These results demonstrate that the overall effect of liming is to reduce N2O emission, although high lime doses may lead to a transiently enhanced emission. 相似文献
57.
Kjeldsen F Christensen LP Edelenbos M 《Journal of agricultural and food chemistry》2003,51(18):5400-5407
Carrots (Daucus carota L.) of cv. Bolero and cv. Carlo were processed into shreds and stored for up to 4 months at -24 degrees C (frozen storage), or the roots were stored for up to 4 months at 1 degrees C (refrigerated storage) followed by processing into shreds. Volatiles from the carrot shreds were collected by dynamic headspace technique and analyzed by GC-FID, GC-MS, GC-MS/MS, and GC-O to determine the volatile composition and aroma active components of carrots stored under different temperature conditions. A total of 52 compounds were quantified, of which mono- and sesquiterpenes accounted for approximately 99% of the total volatile mass. Major volatile compounds were (-)-alpha-pinene, beta-myrcene, (-)-limonene, (+)-limonene, (+)-sabinene, gamma-terpinene, p-cymene, terpinolene, beta-caryophyllene, alpha-humulene, and (E)- and (Z)-gamma-bisabolene. A considerable increase in the concentration of mono- and sesquiterpenes was observed during refrigerated storage, whereas the concentration of terpenoids was around the same level during frozen storage. GC-O revealed that the major volatiles together with (+)-alpha-pinene, (-)-beta-pinene, (+)-beta-pinene, 6-methyl-5-hepten-2-one, (-)-beta-bisabolene, beta-ionone, and myristicin had an odor sensation, which included notes of "carrot top", "terpene-like", "green", "earthy", "fruity", "citrus-like", "spicy", "woody", and "sweet". 相似文献
58.
Forest soil carbon (C) pools may act as sinks for, or sources of, atmospheric carbon dioxide, while nitrogen (N) fertilization may affect the net exchange of C in forest ecosystems. Since all major C and N processes in soil are driven by soil microorganisms, we evaluated the effects of N fertilization on biomass and bacterial and fungal activity in soils from three Norway spruce forests with different climatic and N availability conditions. N deposition and net N mineralization were higher at the sites in southern Sweden than at the site in northern Sweden. We also studied the extent to which N fertilization altered the nutrient(s) limiting bacterial growth in soil. We found that on average microbial biomass was reduced by ~40% and microbial activity by ~30% in fertilized plots. Bacterial growth rates were more negatively affected by fertilization than fungal growth rates, while fungal biomass (estimated using the phospholipid fatty acid (PLFA) 18:2ω6,9) decreased more than bacterial biomass as a consequence of fertilization. The microbial community structure (indicated by the PLFA pattern) was changed by fertilization, but not in the same way at the three sites. Soil bacteria were limited by a lack of carbon in all forests, with the carbon limitation becoming more evident in fertilized plots, especially in the forests that had previously been the most N-limited ones. This study thus showed that the effects of N fertilization differed depending on the conditions at the site prior to fertilization. 相似文献
59.
Lars A. Knechtenhofer Irene O. Xifra Andreas C. Scheinost Hannes Flühler Ruben Kretzschmar 《植物养料与土壤学杂志》2003,166(1):84-92
To assess the mobility of Pb and associated metals in a highly contaminated shooting range soil (Losone, Ticino, Switzerland), we investigated the spatial distribution of the metals and their relation to preferential water flow paths. A 2.2 m2 plot located 40 m behind the stop butt was irrigated with a solution containing bromide and Brilliant Blue, a slightly sorbing dye. A soil profile 50 cm in width was sampled down to 80 cm with a spatial resolution of 2.5 cm, resulting in 626 samples. Concentrations of elements (12 ≤ Z ≤ 92) were determined by energy‐dispersive Xray fluorescence spectrometry, and Brilliant Blue concentrations were determined with a chromameter. In the acidic (pH 3), organic matter‐rich, well drained Dystric Cambisol, maximum concentrations of 80.9 g kg‐1 Pb, 4.0 g kg‐1 Sb, and 0.55 g kg‐1 Cu were measured in the topsoil. Within 40 cm soil depth, however, Pb, Sb, and Cu approached background concentrations of 23 mg kg‐1, 0.4 mg kg‐1, and 9.4 mg kg‐1, respectively. The even horizontal distribution and the steep gradient along soil depth indicate tight metal binding in the topsoil, and a fairly homogeneous transport front. In contrast, water flow through the profile was highly heterogeneous. In the uppermost 20 cm, preferential flow was initiated by heterogeneous infiltration at the soil surface, but had no influence on metal distribution. Below 20 cm, however, preferential flow originated from larger tree roots, and metal concentrations were significantly elevated along these macropores. Spatial distributions of Pb, Sb, and Cu were similar, suggesting that all three metals are strongly retained in the topsoil and transported along preferential water flow paths in the subsoil. 相似文献
60.
Solid fractions from separated animal slurry can be used as organic fertilisers on agricultural land. Solid fractions contain variable amounts of inorganic and organic N, so it is important to synchronise their application in the field with crop demand to ensure N availability in the growing season. This study quantified C and N mineralisation for a wide range of solid fractions from slurry separation applied to soil and examined potential correlations between chemical and biochemical characteristics of solid fractions and their C and N turnover. The solid fractions were mixed with soil and incubated at 14°C for 120 days, during which CO2 evolution and inorganic N content of the solid fractions were determined. A two-parameter exponential function fitted to the individual solid fraction C mineralisation patterns explained 98% of the data variation, while a three-parameter Monod-type equation fitted to the net N mineralisation patterns explained 89% of the variation. Between 5% and 45% of initially added C was mineralised within the incubation period, with the largest proportion tending to be mineralised from simple mechanically separated solid fractions (MEC). Nitrogen was initially immobilised by the majority of solid fractions. Solid fractions from decanter centrifuged, anaerobically digested slurry (DEC) and chemically pre-treated and separated slurry (KEM) began to re-mineralise N after 20?C40 days, whereas N was continuously immobilised from MEC solid fractions. The carbon mineralisation rate constant was correlated with the C content in the neutral detergent soluble (NDS), hemicellulose and cellulose fractions and the N content in NDS. Net nitrogen mineralisation was correlated with the C/Norg ratio of solid fractions, the N content of NDS and the C content of hemicellulose and cellulose. 相似文献